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1 Hors d’oeuvre

The category 2Cob is the category. ..

e whose objects are the closed oriented 1-manifolds.

e whose arrows are the diffeomorphism classes of oriented cobordisms between them.

It can be described explicitly. This is not possible in general (say, for nCob), since the
complete classification of surfaces is a privilege currently reserved for dimension 2 and lower.
The category of 2-dimensional cobordisms thus hits the sweet spot between not trivial like
1Cob while still being solvable. While some (but definitely not all) results presented here
applicable to 2-dimensional cobordisms can be generalised to higher dimensions, we will always
restrict ourselves to 2 dimensions, even if not explicitly stated.

Furthermore, 2Cob bears significance in certain discussions about theoretical models in
physics [1]! Topological Quantum Field Theories (TQFTSs) possesses certain features one
expects from a theory of quantum gravity. It serves as a toy model and reference frame in
which one can do calculations and gain experience before embarking on the quest for the
full-fledged theory, which is expected to be much more complicated.

Roughly, the closed manifolds represent space, while the cobordisms represent space-time.
In the third introductory lecture, we have encountered a functor from 2Cob to Vect; bearing
a monoidal structure, aptly called a (2-dimensional) TQFT. The fact that the disjoint union
goes to tensor product expresses the common principle in quantum mechanics that the state
space of two independent systems is the tensor product of the two state spaces. The associated
vector spaces are then the state spaces, and an operator associated to a space-time is the time-
evolution operator!.

The topological part in the name comes from the observation that time-evolution opera-
tors do not depend on any additional structure on space-time (like Riemannian metric or
curvature), only on the topology.

Lalso called transition amplitude or Feynman path integral.



2 Skeleton categories

Since 2Cob is a large category (i.e. its objects are, in a sense, too numerous to form a
set), we cannot get hold of something we will soon know as a generating set. It is therefore a
wise idea to try to reduce 2Cob to a more manageable size. Since we already discussed that
any closed, orientable 1-manifold is diffeomorphic to a disjoint union of circles, we arrive at a
mathematically dense but still intuitive idea.

Recall that

a) Any connected, closed and oriented 1-manifold is diffeomorphic to the circle S! (since
in this case they are diffeomorphic if and only if they are homotopic).

b) Any closed and oriented 1-manifold with n components is diffeomorphic to the disjoint
union of n copies of S'.

This motivates us to define an equivalence relation between closed, orientable manifolds:

M~N & popn

The collection of equivalent manifolds is called an isomorphism class.

Definition 2.1. A skeleton Z of a category C is the minimal subcategory of C that is still
equivalent to C as categories.

More technically, it is a full subcategory comprising exactly one object from every isomor-
phism class.

While the second characterisation of Z is more instructive, the minimality condition of the
first characterisation is very revealing about the nature of skeletons. They are equivalent
to their "parent” category C since there exists an equivalence (full, faithful, and essentially
surjective functor) between them, which in this case is the embedding Z < C. But Z is
minimal in the sense that, by removing any objects we lose essential surjectivity, and by
removing any arrows we lose fullness. A skeleton Z C C captures the essential structure of C.

Example 2.2. The category FinSety is the category with finite sets as objects and invertible
maps/isomorphisms between them as arrows. Note however that for two sets Si, S to be
isomorphic, they need to have the same cardinality, |S1| = |Sa|. We can already see that some
grouping emerges, as there are no two objects with different cardinalities in this set that are
connected by an arrow.

The skeleton of FinSety is defined as Z = {0,1,2,...}, i.e. choosing one representative set
per cardinality as objects. Now, there are arrows from n to m if and only if n = m. The arrows
from m to m are precisely the permutations of the elements in the set n = {0,1,...,n — 1},
which themselves form a 1-object category. Thus we have Z = HnENo on as categories (see
talk 9 for further details).

Note that there is no canonical way of choosing representatives of isomorphism classes,
however any two skeletons are isomorphic.



3 Group-theoretic intuition

The explicit description of the skeleton of 2Cob , which we yet have to get to know, is
done in terms of generators and relations, something the aspiring mathematician likely first
encountered in group theory.

Definition 3.1. The presentation of a group G is written as (S|R) and consists of a set
of generators S such that any element of G can be written as a composition of powers of
elements (and their inverses) in S, and a set R of relations among those generators. R is
a set of equalities involving compositions of powers of generators to conclusively ascertain
G. Formally, G is isomorphic to the quotient of a free group on S by the normal subgroup
generated by R.

Example 3.2. Presentations of groups

e The free group generated by a single element is denoted Fy and is presented by {(a|D).
Therefore, Fy = {a"|n € Z} is isomorphic to Z with addition as group operation.

e The cyclic group of order n is denoted C,, and is presented by (a|la™ = e). Therefore,
Cp={a’ =e,a,...,a" '}, which can be interpreted as the set of rotational symmetries
for the n-sided polygon.

o The dihedral group of order 2n is denoted D,, and is presented by (r, f|r" = f2 = (rf)? =
e). Therefore, D,, can be interpreted as the set of symmetries for the n-sided polygon,
where we allow rotations r as well as flips f.

These are some nice simple examples to get back into group theory. Consider now the next
example, which will be vitally important later:

Example 3.3. The symmetric group of order n is denoted o, and is the group of permu-
tations acting on n > 4 letters/objects {x1,...,x,}. They are generated by adjacent trans-
positions, S = {1; = (z;xi41)%|i = 1,...,n — 1}, which means that any permutation can be
created/reached by subsequent flips of neighbouring letters.

Secondly, the generators are subject to the following relations:

T;T; — € Vi
TiTjTi = TjTiT; Vi=itl
TiTj = TjTq vj >i+1

The first relation means that two subsequent transposition just invert each other. The third
relation means that transpositions for disjoint pairs commute. The second relation is not so
simple to grasp in words, but maybe we don’t have to.

Consider o4, and visualise the letters {x1,x2,x3, x4} by drawing them as a column of dots.
Then, we can visualise the generators and relations by expressing permutations as connecting
graphs, almost as if we were tying our shoes. This leaves us with:



Figure 1: Visualisation of the generators of oy4.

Figure 2: Visualisation of the relations of oy.

Howewver, don’t you think that there is some redundant visual information present? For
example, do we really need to draw the parallel top/bottom line for the second relation in
order to hold? Indeed, this leads us to Paralleling as generating concept. Notice for
example that the generators in o4 are just the transposition element (€ o2) in disjoint union
(combined in parallel) with identity permutations. This is the only generator in oo (it is the
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Figure 3: Visualisation of the transposition.

only non-trivial element), and if we allow paralleling as a generating concept, it also suffices
to generate o4. With parallel coupling, we can further reduce the amount of relations to two:

2Cycle notation.
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Figure 4: Visualisation of the relations modulo paralleling.

Compare now 3.1 to the following definition, which will be essential for the rest of the
chapter:

Definition 3.4. The generators for a category C is a set of arrows S such that every arrow
in C can be obtained by composing the arrows of S. If C additionally has a monoidal structure,
S is such that every arrow in C can be obtained by combining composition of arrows in .S and
the associated monoidal functor .

A relation is the equality of two ways of writing a given arrow in C. A set of relations R
is complete if every other relation can be obtained by combining elements of R.

In talk 2 and 3 we discovered that (2Cob, [ [, @, twist) is a (symmetric) monoidal category,
so we expect to obtain every arrow in 2Cob by combining composition of arrows in S and
the disjoint union [].

4 Considerations of cobordisms

The notion of invertible cobordisms gives us a sense in which closed manifolds are diffeo-
morphic. Check talk 3 for the proof that the cylinder cobordism indeed is the identity arrow
(modulo diffeomorphism) for any object in the category 2Cob .

Definition 4.1. The cobordism M : ¥y — Y; is invertible if there exists a cobordism
M~' : %, = ¥ such that MM~ is diffeomorphic to the cylinder g x I and M~'M is
diffeomorphic to the cylinder ¥ x I.

Lemma 4.2. Let M : ¥y — X1 be invertible, and M be connected as a manifold. Then are
Yo and X1 connected.

Proof. By assumption MM~ = 3y x I = Cy, which is "horizontally connected”. This means
that every point of Cy is connected to some point of its in-boundary. But this is also the
in-boundary of M which is assumed to be connected, so Cj is connected. And since for an
arbitrary 3, the cylinder ¥ x I has the same number of connected components as ¥, ¥y (which
is the base of Cp) is connected as well. The same arguments hold for M My, xI=0;
as well, thus X is connected as well. ]

Lemma 4.3. Let M : ¥y — X1, M’ : 3 — X} be two cobordisms such that the disjoint union
cobordism MM’ : 3o [[X( — Z1 ][ %] is invertible. Then are M, M’ invertible as well.



Corollary 4.4. Let M : Xg — X1 be invertible. Then Xy and X1 have the same number of
connected components.

Proof. The case of M having one component is covered in 4.2, so let M have more than one
connected component. As an inductive step, let it be true for n connected components, that
its boundaries Xy and Y1 have n connected components as well. Then if M has n+1 connected
components, we note that this is a disjoint union of a cobordism with n connected components
and a connected cobordism. So inductively via 4.3 we arrive at the desired conclusion. ]

Proposition 4.5. Let X, Y1 be closed oriented 1-manifolds. They are diffeomorphic if and
only if there is an invertible cobordism between them.

Proof. ( =) From talk 3 we have seen that for a given diffeomorphism ¥y = ¥;, we can use
the cylinder construction, which is its own inverse and is indeed diffeomorphic to a cylinder,
so we have found an invertible cobordism between them.

( <= ) By assumption there is an invertible cobordism. By 4.4, ¥y and ¥; are closed,
oriented 1-manifolds. But then they are both diffeomorphic to a disjoint union of the same
number of circles, and thus indeed they are diffeomorphic to each other. ]

With the following corollary, we are finally ready to discuss the objects of the skeleton of
2Cob .

Corollary 4.6. Two objects of 2Cob (two closed, oriented 1-manifolds) are in the same
isomorphism class (that is, there exists an invertible cobordism between them) of 2Cob if and
only if they have the same number of components.

The skeleton of 2C0ob is the category. ..

e whose objects form the set {0,1,2,...} where 0 denotes the empty manifold, 1 a circle
51, and n the disjoint union of n copies of S*.

e whose arrows are the diffeomorphism classes of oriented cobordisms between them.

By slight abuse of notation, we denote this skeleton 2Cob as well. For everything that follows,
whenever we refer to 2Cob and its properties, chances are high that we are actually talking
about its skeleton. Luckily they are equivalent as categories, so in our discussion here this
will not be an issue.

One might be tempted to think that since we included the disjoint union as an allowed
operation for generating, we can focus solely on connected cobordisms. This is however not
entirely true! The twist cobordism which acts on a disjoint union of two non-empty objects,
Yo 131 = £1]] 2o, is not diffeomorphic to the cylinder! This is precisely because a necessary
condition for two cobordisms to be equal modulo diffeomorphism is that they both treat the
boundary the same way.



Remark 4.7. For two sets A and B, generally we have A|JB = B|JA, but A[[B# B][A
(there is however a canonical isomorphism A B = B[ A, realised through the twist map)!
From the categorial point of view, the disjoint union is the coproduct in Set with canonical
inclusion maps.

The point is that even for X[ X, where ¥ might be a set or a 1-manifold for example,
the two copies are not identical and can be distinguished. A neat way of realising this is by
labelling every element in the first set with a lower index 1 and every element in the second
set with a lower index 2.

In light of 4.7, we can distinguish two copies of ¥ by choosing a point in X [[X and
differentiating which copy contains the point and which does not. twists 1y % idg[x then
because under the identity (cylinder), the point stays on the same connected component, but
it does not so under the twist map.

5 Generators for 2Cob

Theorem 5.1. The monoidal category 2Cob is generated under composition® and disjoint
union® by the following siz cobordisms:

co@m(@@ and

Figure 5: We shall call them, from left to right: left cap, left pants, cylinder, right pants,
right cap, and twist.

Let us emphasise this again: We are really talking about the skeleton of 2Cob , and not
about 2Cob itself, because in general we cannot obtain a (finite) generating set for a large
category. We are content to describe the generators of the skeleton nonetheless, because by
definition it still captures the essential structure of its parent category.

We will discuss two different proof of 5.1 in varying depth. Recall that the objects of (the
skeleton of) 2Cob are exactly {0,1,2,...,n,...}.

5.1 Proof by normal form and permutation

Definition 5.2. The normal form of a connected (oriented & compact) surface with n
in-boundaries, m out-boundaries, and genus g is a decomposition of the surface into 3 basic
cobordisms.

3serial connection
4parallel connection



e The in-part is a cobordism n — 1 consisting of n—1 (for n > 0) left pants composed one
after the other on the bottom leg, together with the appropriate number of cylinders on
top. If n =0, it consists of a single left cap.

e The middle part is a cobordism 1 — 1 consisting of g pairs of right pants composed
with left pants.

e The out-part is a cobordism 1 — m consisting of m—1 (for m > 0) right pants composed
one after the other on the bottom leg, together with the appropriate number of cylinders
on top. If m = 0, it consists of a single right cap.

Recall the naming convection from Figure 5. This is one of those definitions who are much
easier to understand with an example, so here is one:

Example 5.3.

@@@@@@

Figure 6: Normal form of a surface with n =5, g =4, and m = 4.

This construction leads to the following result:

Lemma 5.4. FEvery connected 2-cobordism can be obtained by composition and disjoint union
of the first five generators listed above.

Proof. The normal form is a recipe for constructing any connected cobordism from the first
five generators, without the twist. O

We will need the relations to show explicitly that any connected cobordism can be brought
into normal form. We shall therefore postpone this task to Chapter 7

Lemma 5.5. Every 2-cobordism factors as a permutation cobordism, followed by a disjoint
union of connected cobordisms, followed by a permutation cobordism.

Proof. Let M : n — m be a cobordism. Therefore, M is a 2-manifold with in-boundary
(OM)in = X1 ]]--- 11 2n and out-boundary (OM ) = X7 1]---11%},, where all ¥’s are all
copies of S! but can be distinguished with labels, in light of 4.7.

Without loss of generality, let M have exactly two connected components, M = My [ M;.
Then (0Mp)in a subset p of (OM )i, = X1 ][+ [[2n and (OM)in its complement q. It is



generally not true that the first p circles belong to My and the last ¢ = n — p circles belong
to M;. But then we can take a diffeomorphism n = n such that p comes before (above)
q. This diffeomorphism induces a cobordism S : n — n, which composes to the cobordism
SM :n — m such that (0SM)in=(0SMp)in [ [(OSM1)in.

Applying now the argument to the out-boundary of SM (which is the out-boundary of M),
there exists a permutation cobordism 7' : m — m such that SMT : n — m is a cobordism
which is a disjoint union of connected components as a cobordism. O

Proof. Version 1 of Theorem 5.1 (Normal form) Let M be connected as a manifold. Then
it is generated by the first five cobordisms, as has been shown in 5.4. If M has several con-
nected components, it factors into permutation cobordisms and a disjoint union of connected
cobordisms. Since the symmetric group is generated by transpositions (see 3.3), the permu-
tation cobordisms can be obtained by composition and disjoint of the twist cobordism and
the cylinder /identity cobordism. O

5.2 Morse-theoretic proof

Definition 5.6. A Morse function is a smooth map f : M — I, M a manifold, I a real
interval, such that all critical points (points where the differential vanishes) are non-degenerate
(the determinant of the Hessian matrix does not vanish).

The index of a critical value is the number of negative eigenvalues of the Hessian matrix
at that point.

For our purposes, let’s further assume that f~1(01) = M, and that the two points in 91
are regular values (OM does not have any critical points).
The next statement follows directly from the Regular Interval Theorem (see talk 3):

Corollary 5.7. If a cobordism admits a Morse function without critical points then it is
equivalent to a permutation cobordism.

Lemma 5.8. Let M be a compact, connected, orientable surface with a Morse function M —
[0,1]. If there is a unique critical point x and x has index 1 (x then is a saddle point), then
M is diffeomorphic to a disc with two discs missing.

A disc with two discs missing is diffeo to a sphere with 3 holes and is diffeo to a pair of
pants.

Proof. Version 2 of Theorem 5.1 (Morse-theoretic) Let M : ¥y — X1 be a cobordism, f :
M — [0,1] such that f~1(0) = 3o, f~(1) = X1. Since M is compact (in our discussion), f
has only finitely many critical values. This allows us to partition I = Uf:o [a;, a;+1] such that
every subinterval contains at most one critical point.

Consider a subinterval [a,b] C I, whose preimage f~'([a,b]) = M|, contains at most one
critical point z. M|, may consist of several connected components, (at most) one of them
contains x, by 5.7 the others are equivalent to permutation cobordisms, which are generated
by the twist cobordism and the cylinder (see 3.3).



Thus assume now M,y is connected and has a unique critical point z. If z has index 0 or
2, we have a local minimum or maximum, and M,y is diffeomorphic to a disc. If  has index
1, Mjqy is diffeomorphic to a pair of pants by 5.8. O

6 Relations for 2Cob

Recall 3.3, where we first listed the generators graphically for o4, and then showed how
some compositions of generators are equivalent to others. These equivalences are what we
call relations.

Theorem 6.1. The following relations hold:
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Figure 7: Identity relations.
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Figure 8: Disc removal relations.
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Figure 9: (Co)associativity relations.
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Figure 10: (Co)commutativity relations.

SR

Figure 11: Frobenius relations.

Proof. In each case, the surfaces have the same topological type: they have genus 0 and
possess the same number of in- and out-boundaries. Thus by the classification of surfaces,
there are diffeomorphic. O

Not satisfied with this argument? Well, you are in luck! There are not one, but two different
intuitions to visualise the truth of the various relations. We will not be going through each
of them, but we shall showcase the two approaches on one relation each.

Example 6.2. Note that the cap is diffeomorphic to a disc, the cylinder is diffeomorphic
to a disc missing a disc, and the pants are diffeomorphic to a disc missing two discs (with
appropriate orientation of their boundaries). The associativity relation is then obtained by
making two different decompositions of a disc with three missing discs.

S

Figure 12: Proof of the associativity relation via nested discs

We can demonstrate the disc removal relations and commutativity in exactly the same way.
In the latter case, just note that the pair of pants is diffeomorphic to a disc with two smaller
discs within missing, and that we can freely slide them around. To show the right-hand
counterparts of those relations, simply reverse the orientation of the boundaries.

11



Example 6.3. The demonstration of the Frobenius relation is tricky with discs.
that we have a surface which we can cut up in three different ways.

- 12 -
T

Figure 13: Proof of the Frobenius relation via decomposition
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Thus note

As previously stated, (2Cob, | [, &, twist) is a symmetric monoidal category. In our context,
this means that the twist is its own inverse. This combined with the interplay with the other

generators leads to additional relations:

Theorem 6.4. The following relations hold:

335

Figure 14: Involutive twist relation.
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Figure 15: ”Moving twist past a cap” relations
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Figure 16: ”"Moving twist past the multiplication pants” relations

% gg Og Og gg (é); %

Figure 17: Symmetric group relation

Remark 6.5. Notice how the relations in Figure 14 and 17 mirror exactly the relations seen
i Figure 4.

7 Sufficiency of the chosen relations

A priori there are infinitely many relations. For example, a four-fold composition of the
twist cobordism is equivalent to the identity cylinder as well. But this can already be derived
from the fact that the twist is self-inverse, so nothing new under the sun there. The natural
question therefore is whether the relations listed in the previous chapter suffice to derive any
other equivalences one might think of. Before that, we have a small geometrical consideration
to take care of.

Definition 7.1. The Euler characteristic of a triangulated surface M is
xXM)=V -E+F
where V', E, F are the number of vertices, edges, and faces of the triangulation, respectively.

Lemma 7.2. Let M be a connected, compact surface with genus g and k boundaries. Then
its Fuler characteristic is

X(M)=2-29—k

13



Proof. We start with the following closed surfaces: a sphere S? with y(52?) = 2, and a torus
with x(7?) = 0. Both Euler characteristics can be computed easily by how we calculated the
Euler characteristic of CW-complexes (see second introductory lecture),

n

X(M) = " (=1)*my .

k=0
Since for connected sums, the following relations holds,
X(Mi#EMy) = X(My) + x(Mz) = x(S') = x(Mh) + x(Mz) — 2,
we get for the connected sum of n tori (i.e. an n-holed hollow doughnut)
X(#'T?) = nx(T?) —2(n—1) = —2(n—1), n € Np.

Therefore, starting with a sphere with Euler characteristic 2, for every hole (genus), we reduce
by 2. The Euler characteristic of closed surfaces with genus ¢ is thus 2 — 2¢g. Now, for every
boundary component, we remove one disc. By additivity,

X(My U Mz) = x(My) + x(Mz) — x (M1 N Ma),

we have
X(M\D?) = x(M) = x(D?) = x(M) - 1,
which we can repeat for k boundary components, and we conclude. O

Proposition 7.3. The relations listed in 6.1 are sufficient for connected cobordisms.

Proof. Let M be a connected surface with n in-boundaries, m out-boundaries, and genus g.
Furthermore let a be the number of left pants, b be the number of right pants, p be the number
of left discs, and ¢ be the number of right discs.

By 7.2 and the additivity respectively, we state that the Euler characteristic suffices

X(M)=2-29g—n—m=p+q—a—>.
On the other hand we can count the contributions to the number of in- and out-boundaries,

n=b+2a—p,
m=a+2b—gq,

and we infer
a+qg+m=b+p+n.

Combining the two equations yields

a=n—1+g+p,
b=m-1+g-+gq.

14



The plan now is thus to take n — 1 left pants and move them to the left until they become
before any right pants in order to form the in-part of the normal form. If we meet a left
cap, then by disc removal (Figure 8) it becomes a cylinder. This happens p times, so we
have enough left pants to spend. If we meet a pair of right pants, they either connect by one
trouser leg or both. In the first case, the Frobenius relation (Figure 11) applies, and we can
move past them. In the second case, they form a so-called handle or genus hole. This will
happen g times. To move left pants past a handle, we first use associativity (Figure 9) and
then Frobenius. Filling up with cylinders as appropriate, we end up with an in-part consisting
of n — 1 left pants, and a total of p in-boundaries according to normal form.

Repeating equivalently with right pants yields the out-part consisting of m — 1 right pants,
and a total of ¢ out-boundaries according to normal form. In the middle-part, we eventually
have a chain of g handles, with one in- and one out-boundary.

To eliminate twist maps in connected surfaces, consider an arbitrary twist. If the both
left-hand parts are connected, they form a surface with strictly less twist maps, so they can
be brought in normal form inductively using the relations. Since only the out-part of the
left-hand side touches the twist, we can use one of the right pants to eliminate the twist
via cocommutativity (Figure 10. If both right-hand parts are connected the same argument
applies with one pair of left pants and commutativity. If the top or bottom ends of the twist
are connected, the situation will be close to 7.4 (Figure 18). One of the scenarios has to apply
since otherwise the surface would not be connected, and we conclude. ]

Example 7.4. Here, we eliminate the twist by applying cocommutativity, then "moving twist
past the multiplication pants”, then Frobenius, and finally cocommutativity again.

G BP0

Figure 18: Example of elimination of twist map.

All we have to do now is to consider the case of non-connected surfaces and prove sufficiency
there as well.

Definition 7.5. The normal form of any oriented (& compact) surface with n in-boundaries,
m out-boundaries, and genus g is a cobordism which factorises into a permutation cobordism
n — n on the left, a disjoint union of normal forms of connected cobordisms in normal form
5.2, and a permutation cobordism n — n to the right.

Theorem 7.6. The relations listed in 6.1 and 6.4 are sufficient for all cobordisms.

Proof. As in the proof of 5.5, we find permutation cobordisms S :n —w nand T : m — m
such that SMT : n — m is equivalent to a cobordism which is a disjoint union of connect
cobordisms as a cobordism. Any connected middle piece can be brought into normal form,
thus we gathered the normal form for general surfaces, and we are finished. O
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8 Digestif
So there you have it. In summary, we have:
1. Constructed a skeleton of 2Cob and argued why this suffices
2. Found generators and relations for this skeleton
3. Demonstrated the sufficiency of said generators and relations.

With this powerful tool in hand, we can now embark on a journey to discuss more advanced
topics in TQFT. As in the introduction stated, this is a toy model and mathematical frame-
work to discuss quote-on-quote "real” theories such as Quantum Field Theory in physics,
which is a very general theory of how particles move, propagate, and behave. A left pair of
pants cobordism for example can model how over time, a particle decays into two particles,
see Figure 19.

e 0
0 () o

(a) From a cobordism... (b) ...over propagation in time...  (c) ...to a Feynman diagram

Figure 19: Illustration of the connection between cobordisms and physical processes.

One example of such a decay process is the Higgs boson discovered in 2012, which amongst
many other decay modes, has been observed to decay into a pair of W bosons,

H-Wr+WwW~.

Another more well-known example is the radioactive S~ decay, where a neutron decays into
a proton, an electron, and an electron antineutrino,

n—p+e +,

which we can describe as a cobordism with one in-boundary and three out-boundaries.
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