Cubic Surtaces I11

The 27 lines on the blown up projective plane
MATH07 Algebraic Geometry I

Marvin Sigg

December 12, 2025

Abstract
After giving some background information, we verify that the induced morphism from
the projective plane blown up at six base points in non-degenerate configuration to the
projective 3-space embeds the blow-up as a smooth cubic surface. Afterwards we count
the number of lines on the surface via basic intersection theory.
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1 Introduction

One of the first results of a highly non-trivial fashion arising from projective geometry is the
following;:

Theorem 1.1. Any smooth cubic projective surface contains exactly 27 lines.

This result seems to be as striking now as it was back when it was demonstrated by Cayley
and Salmon in 1849. Since then, a number of proofs have been developed, all using different
approaches, language, and machinery. In this talk, we will take a somewhat streamlined classic
route, and only occasionally reference the modern language of scheme theory. We will not go
the whole way, as this talk is embedded in the middle of a five-part series.

In a nutshell, we will show that the image of blowing up the projective plane at six suitable
points is, when embedded in projective 3D-space, a smooth cubic surface. In the main part,
we will demonstrate that this surface contains exactly 27 lines. We will use several results
from previous talks as prerequisite. Meanwhile, a later talk will demonstrate that any smooth
cubic surface can be obtained this way, completing the proof of Theorem 1.1.

This write-up aims to strike a balance between presenting the strategy in a linear fash-
ion, and including an appropriate amount of background explanations and didactic exposé.
Throughout, we will be closely following [1].

2 Setting and Preliminaries

Construction 2.1. The general setup is as follows: Fiz sixz distinct points p1, .., pe € P? called
the base points/exceptional points, satisfying the following "generality” condition:

e no three of them lie on a line
e they do not all lie on a conic )
We write 7 : P2 — P2 for the blow-up of P? at the base points.
The generality condition (%), as we will see, is necessary to ensure that our blown up surface
is not degenerate and in fact a smooth cubic.

In the preceding talk, we have seen the following very useful statement:

Theorem 2.2 (Cubic Surfaces II). Let X be a projective variety. A morphism ¢ : X — P"
maps X isomorphically to its image in P™ if and only if the linear forms:

(i) separate points'

(ii) separate tangent vectors®

i.e., for every pair of distinct points P and @ in X, there is a linear form vanishing at P but not at Q
%j.e., for every point P the linear forms vanishing at P span mp/(mp)z, where mp denotes the maximal
ideal in the local ring of X at P



This is our key to show that our blow-up is a cubic surface embedded in projective space.
We will apply a particularly rephrased variant of Theorem 2.2 suitable for our needs, but for
this we need to introduce some new notations.

Notation 2.3. Let 7 : P2 — P2 be the blow-up of P? at the base points p1,...,ps. Let E;
denote the exceptional divisor over p;. Let H be the (unique) class of lines in P?. Consider
the complete linear system |C| defined by

C=n3H—E,—--— Fg.

Let us unravel this definition by expanding upon implicit assumptions, and recalling and
combining definitions we have seen before. Remember that, as a rough picture, one may view
P2 by taking P? and replacing the base points by copies of the projective line P'. Next, we
shall recall basic notions seen in the Divisors talk, but already coined onto our setting:

Definition 2.4. A divisor D on a variety is a (locally finite) formal linear combination of
(irreducible) hypersurfaces V;, D = Z; a;V;. A principal divisor is a divisor D of the form
D = (f) = (zeroes of f) — (poles of f) for some regular function f, given by the valuation.

Next, recall the following from the Blow-Up talk:

Definition 2.5. Let C be a curve in P2. The total transform of C is its preimage by the
blow-up, 7*C := 7~!(C). The strict transform of C is the Zariski closure of its preimage

sans the base points, C' 1= =1\ (U, p))-

Strict transforms of smooth curves in P? are smooth curves in P2 which do not intersect the
exceptional divisors, hence m maps them isomorphically back to the original curve minus the
base points.

Definitions 2.4 and 2.5 help us piece together what is going on: We implicitly construct a
curve C' C P? by defining its strict transform as a curve (better yet: a divisor!) C C P2
Take the total transform of three times the class® of the line (that is, a cubic curve), and then
subtract the exceptional divisors. The final puzzle piece is the following:

Definition 2.6. A (complete) linear system |D| is the family of divisors* that are linearly
equivalent to some divisor D.

To summarize, C is the class of strict transforms of cubics through the base points p1, ..., pe,
while |C| consists of all divisors on P2 in the class of C.

Remark 2.7. The family of all cubics in three variables (as we are working in P?) is

3.3 .3 2 2 2 2 2 2
klxo, 1, x2]3 = span(xy, 7, 5, THT1, T5T2, TIX0, TIT2, THT0, THT1, TOT1T2)

3that is, the equivalence class under linear equivalence: D ~ D' <= 3f:D — D’ = H
4technically we restrict to effective divisors, where we require a; > 0 for all non-zero coefficients a;.



which naturally forms a 10-dimensional k-vector space. Since we view this as the coordinate
ring in the projective plane P2, it forms a 9-dimensional linear system (3H ), removing one
degree of freedom by scaling. When not stated otherwise, the notion of dimension will refer to
linear systems, rather than vector spaces.

Therefore, Construction 2.1 yields the linear system ]5’\ of cubics passing through the six
points pi,...,ps. That is to say, ]5| consists exactly of curves of the form m=*(C) — Ey —
... — Eg, where C is a cubic curve in P? containing p1,...,ps. The requirement for the cubics
to vanish at all ponts yields six independent linear equations, which each reduce the dimension
by 1, therefore dim \5| =3.

Choosing a basis of the 4-dimensional vector space, say Fpy, Fi, Fa, F3 (which are linearly
independent homogeneous polynomials of degree 3 that vanish at all six base points), induces
the rational map

P2 -5 P3
x =[x a1 X2 — [Fo(z) : Fi(x) : Fo(zx) @ F3(x)],

which is not a morphism, since it is not defined at p1,...,ps. Then, as we have seen in Cubic
II, blowing up P? at p1,...,pg yields the morphism

gp:ﬁ—)ﬂ”?’

that is central to our endeavour.

3 Proof of the Embedding Claim

The first of the two main tasks is to verify that the morphism ¢ satisfies the conditions of
Theorem 2.2. A complication in this matter is that we need to distinguish between different

cases, namely whether the points on P2 to be separated are ordinary or exceptional. The good
news is that the argument runs fairly similar for separating tangent vectors as well, as they
are represented as elements of the blow-up. To this end, we introduce a final bit of notion:

Definition 3.1. We say that a point ¢ is infinitely near p if ¢ is a point on the exceptional
divisor E of the blow-up 7 : P2 — P2 of P? at p.

We are now ready to state the central claim.

Claim 3.2. The linear system \5] embeds P2 as a cubic surface in P3. In particular, we claim
that

1.C-C=3 (the degree of the closure of the image is 3)

2. dim|C| = 3



3. @ separates distinct points P, Q) € @, for®

3a) P,Q € P2\{p1,...,p6}

3b) P infinitely near p1, Q € P2\{p1,...,p6}
3c¢) P infinitely near p1, Q infinitely near ps
3d) P,Q both infinitely near p;

4. @ separates tangent vectors at P € I/PE, for

4a) P infinitely near Q € P?\{p1,...,ps}
4b) P infinitely near Q which is infinitely near py

Note that P and Q get separated if and only if p1,...,pe, P,Q determine a 1-dimensional
system. Further recall the following lemma from the previous talk:

Lemma 3.3 (Cubic Surfaces II). Consider points on the projective plane P2.

(i) Seven distinct points qi, ..,q7 define a 2-dimensional linear system of cubic curves if and
only if no five of them lie on a line.

(i) Siz distinct points qi,..,q¢ with a tangent direction at qi, specified by line I through qi,
define a 2-dimensional linear system of cubic curves if and only if no five of q1,..,qg lie
on a line and no three of qo, .., qg lic on [.

This result, together with the preceding statement, is key to our proof. For Claim 3, in each
case we show that p1, .., pg, P, Q) determine a 1-dimensional linear system, that is to say, they
impose an "independence condition".

Definition 3.4. Let r be a natural number smaller than 9. We say points qi,...,q, € P?
impose the independence condition if the linear system they determine has dimension 9—1.
Conversely, we say that qp,...,q, fail the condition if the linear system they determine has
dimension bigger than 9 — r.

Note that by () the six base points impose the independence condition, so the linear system
they determine has dimension 3. This takes care of Claim 2.

We proceed by showing that the seven distinct points ps, .., pg, P, @ determine a 2-dimensional
system, in which there exists a member that does not contain p;, after appropriate reordering.
In the following, the statement is shown for Claim 3a). The remaining subclauses 3b) - 4b) are
dealt with in a very similar manner, by noting that the independence condition and Lemma
3.3 are applicable even if at most two points are infinitely near other points.

SWithout loss of generality, we can reorder the base points as needed.



Proof. Claim 3a) Let P, Q be (ordinary) points in P2. By (x), at most two of the points
P2, ..., pe are collinear. Therefore, even if P and Q) were collinear with some p;, ¢ # 1, at most
four of the points po, ..., pg, P, @ are collinear. So by Lemma 3.3, po, ..., ps, P, @ determine a
2-dimensional linear system (i.e. they satisfy the independence condition).

Now, let C' be the unique conic through py,...,ps, P, @, if it exists. If it does not, let C be
a union of two lines® passing through py, ..., ps, P,Q. At least one of py,ps,p3 is not on C,
say p1 (otherwise, either all 6 p;’s lie on a conic, or three lie on the same line, violating () in
both cases). Define L to be the line connecting py and ps; L does not contain p; by (*). Then
is C'U L a member of the 2-dimensional system which does not contain p;. O

To conclude, any two points on the blow-up, together with the six base points satisfying (x),

impose the independence condition. Therefore, ¢ embeds P? as a cubic surface S into P3.

4 Counting the Lines

After constructing the cubic surface S, it is now a fairly simple matter to explicitly produce
the lines sitting on S. However, the recalling of another notion is needed.

Definition 4.1. The intersection number D - D’ of two divisors D, D’ is, roughly speaking,
a measure of how many times they geometrically intersect.

Note that this mapping is bilinear. We state the following auxiliary remark without proof:

Remark 4.2. Let D, D’ be any divisors on P2. The following identities are useful to speed up
the computation:

o V1 - Vo = deg(Vi)deg(Va) for any two distinct ordinary subvarieties, by Bézout’s The-
orem”. In particular if L,L are distinct lines and C,C" distinct conics in P?, then
L-L'=1,L-C=2,and C-C'"=4. If 3H the generic class of cubics as above, then

C-3H =6.
e D -7*D' =D D"

o If D is a non-exceptional divisor, it has self-intersection D - D = deg(D)?. Of
course, any subvariety intersects with itself infinitely many times. The rough idea of
self-intersection is to count how many times D intersects with a "slightly perturbed”
version of itself; at this stage we can invoke Bézout’s Theorem.

o I;- Ij = —6;; since distinct exceptional divisors do not intersect. Exceptional divisors
have "self-intersection -1" for reasons beyond the scope of this write-up. Furthermore,
exceptional divisors do not intersect with generic non-excpetional divisors as well.

Now we are equipped and ready for the final strike.

Sif pa,...,ps, P,Q fail to define a conic, three of them are collinear.
"see the talk next week.



Theorem 4.3. The cubic surface S = P2 in P3 contains exactly 27 lines.

Proof. We are exhibiting varies divisors in P2 and showing that they intersect with the class of
cubics running through the base points, from which the embedding arises, exactly once. This
shows that, embedded in P3, those divisors have degree 1, making them a line sitting on S.

e ( lines from the exceptional divisors: Fix an exceptional divisor E;. Then

6
E-C=E. (w*BH—ZEk>
k=1
— BB =1,

with negative self-intersection and all other terms vanishing, by Remark 4.2. There are
6 exceptional divisors.

o 15 lines from lines through base points: Let F;; be the proper transform in P2 of the line
L;j in P? running through the i-th and j-th base point. Then

6
Flaz (W*LU—EZ—EJ) (TF*3H—ZE]<;)
k=1

with the pull-back property mentioned in Remark 4.2. There are (S) = 15 such distinct
lines L;; in P2, by (x).

e 6 lines from conics through five base points: Let G; be the proper transform in P2 of the
conic C; in P? running through all base points with the exception of p; (which exists by
(*)). Then

6 6
Gi'éz <7T*Ci—jZ#Ej) . (W*BH—;Ek>
=C;-3H+Y Er=6-5=1.

ki

There are (g) = 6 such conics in P2.

Finally, we show that the number 6 4+ 15 + 6 = 27 is not just a lower bound, but the exact
number of lines on S. Let L be any line not arising from an exceptional divisor. Then must
the locus 7(L) C P? be a line or a conic®. We can decompose L as follows:

L=n"n(L)— Z E;.

pien(L)

8by the so-called genus formula.



By assumption, L intersects C exactly once, so

140.C= <7T*7T(L) -y E) : <7l'*3H _ iEk)
k=1

p7;€7r(L)

=3H -n(L)+ Z E; - E;
piem(L)

There are two cases to consider. If (L) is a line, then

so m(L) must contain exactly two base points. If 7(L) is a cone, then

126+ > (-1),

pi€m(L)

so m(L) must contain exactly five base points. Hence L must be a line of the form Fj; or G,
so there are no other lines. O

We conclude: There are exactly 27 lines on the cubic surface which arose from the blow-up!
There are 6 E;’s, 15 F;;’s, and 6 G;’s.

In the next two talks, we will see that every cubic surface in P3 can be constructed via
blow-up, and discuss intersection properties of the lines on the cubic.
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