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Motivation



MOTIVATION: CORRECTION TERMS

Where do these terms come from?

𝐻1 = −( ⃗𝑝2)2

8𝑚3 Relativistic mass correction

𝐻2 = 𝑒
4𝑚2

1
𝑟

𝜕Φ
𝜕𝑟 𝜎⃗ ⋅ 𝐿⃗ Spin-orbit coupling

𝐻3 = 𝑒
8𝑚2 ΔΦ Darwin term

As we will see, these terms arise from relativistic corrections but
persist after taking the non-relativistic limit.
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MOTIVATION: THE DIRAC EQUATION

Relativistic corrections: starting point Dirac equation:

𝐻𝜓 = ( ⃗𝛼 ⋅ ⃗𝑝 + 𝛽𝑚)𝜓 = 𝑖 𝜕
𝜕𝑡𝜓

Unperturbed Hamiltonian:

𝐻 = 𝑝2

2𝑚 + 𝑉
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MOTIVATION: THE DIRAC EQUATION

Dirac Equation (DE) yields solutions which are...

• ...electrically charged (optional)
• ...massive (optional)
• ...with spin 1/2
• ...relativistic

While considering 𝑒−s, we want to examine the non-relativistic limit
of the DE.
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MOTIVATION: THE DIRAC EQUATION

The DE is actually four coupled equations. Problem:

𝛽 = (𝕀2 0
0 −𝕀2

) is even, but ⃗𝛼 = (0 𝜎⃗
𝜎⃗ 0) is odd!

What does this mean, and why is this a problem?
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MOTIVATION: SPINOR SOLUTIONS

Solutions of the DE are represented by 4-component spinors.

𝜓 = (𝜑
𝜒) = (”large” component, E > 0

”small” component, E < 0
)

𝑣
𝑐 →0
⟶ (𝜑

0)

We want to decouple the DE into two 2-component equations.

Even matrices: ℰ = (∗ 0
0 ∗) Odd matrices: 𝒪 = (∗ ∗

∗ ∗)

Goal: Block diagonalise the Hamiltonian!
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MOTIVATION: FOLDY–WOUTHUYSEN TRANSFORMATION

Foldy–Wouthuysen transformation [2]:

• Physical Review, 1950
• Canonical unitary transformation
• Change of basis
• Must not change the spectrum

𝜓 ⟶ 𝜓′ = 𝑒𝑖𝑆𝜓
𝑖𝜕𝑡𝜓′ != 𝐻′𝜓′

→ Blackboard
⇒ 𝐻′ = 𝑒𝑖𝑆(𝐻 − 𝑖𝜕𝑡)𝑒−𝑖𝑆
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MOTIVATION: FOLDY–WOUTHUYSEN TRANSFORMATION

The goal is to derive the three corrections to the Hamiltonian
analytically instead of heuristically.
We will do this once, so we will never have to do it again!
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Transformation of free particles



FREE PARTICLES: ANSATZ

Dirac-Hamiltonian for free particles (V=0):

𝐻 = ⃗𝛼 ⋅ ⃗𝑝 + 𝑚𝛽

We want to rotate in the spinor space. In order for 𝑒𝑖𝑆0 to be unitary,
𝑆0 must be Hermitian. Ansatz:

𝑖𝑆0 = 𝛽 ⃗𝛼 ⋅ ⃗𝑝
| ⃗𝑝| 𝜗( ⃗𝑝)

⇒ 𝑒±𝑖𝑆0 = 𝑒±𝛽 𝛼⃗⋅𝑝⃗
|𝑝⃗| 𝜗(𝑝⃗) = 𝑐𝑜𝑠𝜗 ± ⃗𝛼 ⋅ ⃗𝑝

| ⃗𝑝| 𝑠𝑖𝑛𝜗
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FREE PARTICLES: IDENTITIES

Useful identities:

We have: {𝛼𝑖, 𝛽} = 0, i.e. 𝛼𝑖𝛽 = −𝛽𝛼𝑖

Furthermore, ( ⃗𝛼 ⋅ ⃗𝑝)2 = | ⃗𝑝|2

(𝛽 ⃗𝛼 ⋅ ⃗𝑝)2 = −| ⃗𝑝|2

We want to compute

𝐻′ = 𝑒𝑖𝑆0(𝐻 − 𝑖𝜕𝑡)𝑒−𝑖𝑆0

→ Blackboard
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FREE PARTICLES: NEW HAMILTONIAN

The computation yields

𝐻′ = ⃗𝛼 ⋅ ⃗𝑝(𝑐𝑜𝑠2𝜗 − 𝑚
| ⃗𝑝| 𝑠𝑖𝑛2𝜗

⏟⏟⏟⏟⏟⏟⏟
!=0

) + 𝛽𝑚(𝑐𝑜𝑠2𝜗 + | ⃗𝑝|
𝑚 𝑠𝑖𝑛2𝜗)

⇒ 𝑡𝑎𝑛2𝜗 = | ⃗𝑝|
𝑚

⇒ 𝑠𝑖𝑛2𝜗 = 𝑡𝑎𝑛2𝜗√
1 + 𝑡𝑎𝑛22𝜗

= | ⃗𝑝|
√𝑚2 + | ⃗𝑝|2

, 𝑐𝑜𝑠2𝜗 = 𝑚
√𝑚2 + | ⃗𝑝|2

⇒ 𝐻′ = 𝛽√| ⃗𝑝|2 + 𝑚2
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FREE PARTICLES: NEW HAMILTONIAN

Our transformed Hamiltonian

𝐻′ = 𝛽√ ⃗𝑝2 + 𝑚2

is diagonalised!

𝐻′ =
⎛⎜⎜⎜⎜⎜
⎝

𝐸
𝐸

−𝐸
−𝐸

⎞⎟⎟⎟⎟⎟
⎠

with 𝐸 > 0

This only works analytically for free particles.
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Transformation under Interaction
with Electromagnetic Field



EM INTERACTION: COUPLING OF HAMILTONIAN

Couple to the electromagnetic field → modify the
Dirac-Hamilton-Operator

⃗𝑝 ⟶ ⃗𝑝 − 𝑒 ⃗𝐴 𝑉 = 0 ⟶ 𝑒Φ
⇒ 𝐻 = ⃗𝛼 ⋅ ( ⃗𝑝 − 𝑒 ⃗𝐴) + 𝛽𝑚 + 𝑒Φ

= 𝛽𝑚 + ℰ + 𝒪
with

ℰ = 𝑒Φ and 𝒪 = ⃗𝛼 ⋅ ( ⃗𝑝 − 𝑒 ⃗𝐴)

and ⃗𝐴: magnetic vector potential (∇⃗ × ⃗𝐴 = 𝐵⃗)
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EM INTERACTION: ANSATZ

Recapitulate Ansatz and condition [4]:

𝑖𝑆0 = 𝛽 ⃗𝛼 ⋅ ⃗𝑝
| ⃗𝑝| 𝜗 and 𝑡𝑎𝑛(2𝜗) = | ⃗𝑝|

𝑚

For small 𝜗 (non-relativistic case), we have:

𝑆0 ≈ − 𝑖
2𝑚𝛽 ⃗𝛼 ⋅ ⃗𝑝 ⇒ 𝑆 = − 𝑖

2𝑚𝛽𝒪

as a new Ansatz. However, the coupling does not allow for an
analytic expression for 𝑒𝑖𝑆 .
⇒ We expand 𝑒𝑖𝑆 in 1

𝑚 .
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EM INTERACTION: ANSATZ

Baker-Campbell-Hausdorff identity:

𝑒𝐴𝐵𝑒−𝐴 =
∞

∑
𝑛=0

1
𝑛! [𝐴, 𝐵]𝑛

= 𝐵 + [𝐴, 𝐵] + ⋯ + 1
𝑛! [𝐴, [𝐴, ⋯ , [𝐴, 𝐵] ⋯]] + ⋯

yields:
𝐻′ = 𝑒𝑖𝑆(𝐻 − 𝑖𝜕𝑡)𝑒−𝑖𝑆

= 𝐻 + 𝑖[𝑆, 𝐻] − 1
2[𝑆, [𝑆, 𝐻]] − 𝑖

6 [𝑆, [𝑆, [𝑆, 𝐻]]]

+ 1
24 [𝑆, [𝑆, [𝑆, [𝑆, 𝐻]]]] − ̇𝑆 − 𝑖

2 [𝑆, ̇𝑆]

with even terms up to 𝑚−3 and odd terms up to 𝑚−2.
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EM INTERACTION: EVENNESS AND ODDNESS

In this context, an operator ℰ resp. 𝒪 is even resp. odd iff

𝛽ℰ = ℰ𝛽 resp. 𝛽𝒪 = −𝒪𝛽

Thus it follows:

ℰ even ⇒ ℰ𝑛 even ∀𝑛 ∈ ℕ
𝒪 odd ⇒ 𝒪2𝑛 even, 𝒪2𝑛+1 odd ∀𝑛 ∈ ℕ

End goal: transform away any 𝒪’s.
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EM INTERACTION: FOLDY-WOUTHUYSEN TRANSFORMATION 1

Brute force calculation:

𝐻 = 𝛽𝑚 + ℰ + 𝒪

𝑆 = − 𝑖
2𝑚𝛽𝒪

𝑖[𝑆, 𝐻] = −𝒪 + 𝛽
2𝑚[𝒪, ℰ] + 1

𝑚𝛽𝒪2

−1
2[𝑆, [𝑆, 𝐻]] = −𝛽𝒪2

2𝑚 − 1
2𝑚2 𝒪3 − 1

8𝑚2 [𝒪, [𝒪, ℰ]]

− 𝑖
6 [𝑆, [𝑆, [𝑆, 𝐻]]] = 𝒪3

6𝑚2 − 1
6𝑚2 𝛽𝒪4

1
24 [𝑆, [𝑆, [𝑆, [𝑆, 𝐻]]]] = 𝛽𝒪4

24𝑚3
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EM INTERACTION: FOLDY-WOUTHUYSEN TRANSFORMATION 1

Brute force calculation:

𝐻 = 𝛽𝑚 + ℰ + 𝒪

𝑆 = − 𝑖
2𝑚𝛽𝒪

− ̇𝑆 = 𝑖
2𝑚𝛽 ̇𝒪

− 𝑖
2 [𝑆, ̇𝑆] = − 𝑖

8𝑚2 [𝒪, ̇𝒪]
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EM INTERACTION: FOLDY-WOUTHUYSEN TRANSFORMATION 1

Input of computed commutators into Hamiltonian:

𝐻′ =𝐻 + 𝑖[𝑆, 𝐻] − 1
2[𝑆, [𝑆, 𝐻]] − 𝑖

6 [𝑆, [𝑆, [𝑆, 𝐻]]]

+ 1
24 [𝑆, [𝑆, [𝑆, [𝑆, 𝐻]]]] − ̇𝑆 − 𝑖

2 [𝑆, ̇𝑆]

= 𝛽𝑚 + 𝛽( 𝒪2

2𝑚 − 𝒪4

8𝑚3 ) + ℰ − 1
8𝑚2 [𝒪, [𝒪, ℰ]] − 𝑖

8𝑚2 [𝒪, ̇𝒪]

+ 𝛽
2𝑚[𝒪, ℰ] − 𝒪3

3𝑚2 + 𝑖𝛽 ̇𝒪
2𝑚
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EM INTERACTION: FOLDY-WOUTHUYSEN TRANSFORMATION 1

Recall:

ℰ even ⇒ ℰ𝑛 even ∀𝑛 ∈ ℕ
𝒪 odd ⇒ 𝒪2𝑛 even, 𝒪2𝑛+1 odd ∀𝑛 ∈ ℕ

Pairing of terms:

𝐻′ = 𝛽𝑚 + (𝛽( 𝒪2

2𝑚 − 𝒪4

8𝑚3 ) + ℰ − 1
8𝑚2 [𝒪, [𝒪, ℰ]] − 𝑖

8𝑚2 [𝒪, ̇𝒪])

+ ( 𝛽
2𝑚[𝒪, ℰ] − 𝒪3

3𝑚2 + 𝑖𝛽 ̇𝒪
2𝑚 )

≡ 𝛽𝑚 + ℰ′ + 𝒪′ ⇒ 𝒪′ ∼ 1
𝑚

𝒪 went away, but 𝒪′ remains. What do we do?
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EM INTERACTION: FOLDY-WOUTHUYSEN TRANSFORMATION 2

2nd Foldy-Wouthuysen transformation:

𝑆 = − 𝑖𝛽
2𝑚𝒪

implies new Ansatz

𝑆′ = − 𝑖𝛽
2𝑚𝒪′

= − 𝑖𝛽
2𝑚( 𝛽

2𝑚[𝒪, ℰ] − 𝒪3

3𝑚2 + 𝑖𝛽 ̇𝒪
2𝑚 )
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EM INTERACTION: FOLDY-WOUTHUYSEN TRANSFORMATION 2

2nd Foldy-Wouthuysen transformation:

𝑆′ = − 𝑖𝛽
2𝑚( 𝛽

2𝑚[𝒪, ℰ] − 𝒪3

3𝑚2 + 𝑖𝛽 ̇𝒪
2𝑚 )

⇒ 𝐻″ = 𝑒𝑖𝑆′(𝐻′ − 𝑖𝜕𝑡)𝑒−𝑖𝑆′

= 𝛽𝑚 + ℰ′ + ( 𝛽
2𝑚[𝒪′, ℰ′] + 𝑖𝛽 ̇𝒪′

2𝑚 )

≡ 𝛽𝑚 + ℰ′ + 𝒪″ ⇒ 𝒪″ ∼ 1
𝑚2

𝒪′ refuses to leave quite so easily. What do we do?
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EM INTERACTION: FOLDY-WOUTHUYSEN TRANSFORMATION 3

3rd Foldy-Wouthuysen transformation:

𝑆″ = − 𝑖𝛽
2𝑚𝒪″ = − 𝑖𝛽

2𝑚( 𝛽
2𝑚[𝒪′, ℰ′] + 𝑖𝛽 ̇𝒪′

2𝑚 )

⇒ 𝐻‴ = 𝑒𝑖𝑆″(𝐻″ − 𝑖𝜕𝑡)𝑒−𝑖𝑆″

= 𝛽(𝑚 + 𝒪2

2𝑚 − 𝒪4

8𝑚3 ) + ℰ − 1
8𝑚2 [𝒪, [𝒪, ℰ] + 𝑖 ̇𝒪]

≡ 𝛽𝑚 + ℰ′

Finally! (Ignore new even terms of higher oder)
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EM INTERACTION: APPLICATION

Modify the Dirac-Hamilton-Operator

𝐻‴ = 𝛽(𝑚 + 𝒪2

2𝑚 − 𝒪4

8𝑚3 ) + ℰ − 1
8𝑚2 [𝒪, [𝒪, ℰ] + 𝑖 ̇𝒪]

= 𝛽𝑚 + ℰ′

with

ℰ = 𝑒Φ and 𝒪 = ⃗𝛼 ⋅ ( ⃗𝑝 − 𝑒 ⃗𝐴)
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EM INTERACTION: APPLICATION

Brute force calculation:

𝒪2

2𝑚 = 1
2𝑚( ⃗𝑝 − 𝑒 ⃗𝐴)2 − 𝑒

2𝑚Σ⃗ ⋅ 𝐵⃗
𝒪4

8𝑚3 = 1
8𝑚3 [( ⃗𝑝 − 𝑒 ⃗𝐴)2 − 𝑒Σ⃗ ⋅ 𝐵⃗]2 ≈ ⃗𝑝4

8𝑚3

[𝒪, [𝒪, ℰ] + 𝑖 ̇𝒪]] = 𝑖𝑒( ⃗𝑝 ⋅ ⃗𝐸 + Σ⃗ ⋅ (∇⃗ × ⃗𝐸) − 2𝑖Σ⃗ ⋅ ( ⃗𝐸 × ( ⃗𝑝 − 𝑒 ⃗𝐴)))

with

Σ⃗ = (𝜎⃗ 0
0 𝜎⃗) 𝑟𝑜𝑡 ⃗𝐸 = 0
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EM INTERACTION: APPLICATION

Input into coupled Hamiltonian:

𝐻‴ = 𝛽(𝑚 + 𝒪2

2𝑚 − 𝒪4

8𝑚3 ) + ℰ − 1
8𝑚2 [𝒪, [𝒪, ℰ] + 𝑖 ̇𝒪]]

= 𝛽(𝑚 + ( ⃗𝑝 − 𝑒 ⃗𝐴)2

2𝑚 − 𝑒
2𝑚Σ⃗ ⋅ 𝐵⃗ − ⃗𝑝4

8𝑚3 ) + 𝑒Φ

− 𝑒
8𝑚2 (2Σ⃗ ⋅ ( ⃗𝐸 × ( ⃗𝑝 − 𝑒 ⃗𝐴)) − 𝑑𝑖𝑣 ⃗𝐸)
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EM INTERACTION: APPLICATION

Hamiltonian 𝐻‴ decoupled, apply to two-component spinor 𝜑:

𝜓 ⟶ (𝜑
0) , 𝛽 ⟶ 𝕀2, Σ⃗ ⟶ 𝜎⃗

𝐻‴ = 𝛽(𝑚 + ( ⃗𝑝 − 𝑒 ⃗𝐴)2

2𝑚 − 𝑒
2𝑚Σ⃗ ⋅ 𝐵⃗ − ⃗𝑝4

8𝑚3 ) + 𝑒Φ

− 𝑒
8𝑚2 (2Σ⃗ ⋅ ( ⃗𝐸 × ( ⃗𝑝 − 𝑒 ⃗𝐴)) − 𝑑𝑖𝑣 ⃗𝐸)

⟶ 𝑚 + 1
2𝑚( ⃗𝑝 − 𝑒 ⃗𝐴)2 + 𝑒Φ − 𝑒

2𝑚𝜎⃗ ⋅ 𝐵⃗

− ⃗𝑝4

8𝑚3 − 𝑒
4𝑚2 𝜎⃗ ⋅ ( ⃗𝐸 × ( ⃗𝑝 − 𝑒 ⃗𝐴)) − 𝑒

8𝑚2 𝑑𝑖𝑣 ⃗𝐸
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EM INTERACTION: TERMS

What do those terms mean?

𝐻‴ =
rest mass

⏞𝑚 +

kinetic energy
⏞⏞⏞⏞⏞1
2𝑚( ⃗𝑝 − 𝑒 ⃗𝐴)2 +

potential
⏞𝑒Φ −

coupling 𝜇⃗ to 𝐵⃗
⏞𝑒
2𝑚𝜎⃗ ⋅ 𝐵⃗

− ⃗𝑝4

8𝑚3⏟
mass correction

− 𝑒
4𝑚2 𝜎⃗ ⋅ ( ⃗𝐸 × ( ⃗𝑝 − 𝑒 ⃗𝐴))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

spin-orbit coupling

− 𝑒
8𝑚2 𝑑𝑖𝑣 ⃗𝐸⏟⏟⏟⏟⏟
Darwin term
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EM INTERACTION: TERMS

Finally, application to hydrogen-like atoms:

Φ ∼ 1
𝑟 , ⃗𝐸 = −∇⃗Φ(𝑟) = −1

𝑟
𝜕Φ
𝜕𝑟 ⃗𝑥, ⃗𝐴 = 0, 𝜎⃗ ⋅ ( ⃗𝐸 × ⃗𝑝) = −1

𝑟
𝜕Φ
𝜕𝑟 𝜎⃗ ⋅ 𝐿⃗

𝐻1 = −( ⃗𝑝2)2

8𝑚3 Relativistic mass correction

𝐻2 = 𝑒
4𝑚2

1
𝑟

𝜕Φ
𝜕𝑟 𝜎⃗ ⋅ 𝐿⃗ Spin-orbit coupling

𝐻3 = 𝑒
8𝑚2 ΔΦ Darwin term
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Physical Interpretation



CORRECTION I: RELATIVISTIC MASS CORRECTION

Heuristically: expand relativistic energy-momentum relation

𝐸 = 𝐸0 + 𝑇 = √𝑝2 + 𝑚2 = 𝑚 + 𝑝2

2𝑚 − 𝑝4

8𝑚3 + 𝑂(𝑝6)

⇒ 𝐻1 = − 𝑝4

8𝑚3

Schrödinger equation a solid approximation, as by the virial theorem:

𝑣 ∼ 𝛼 ≃ 1
137

Would scale with 𝑍 .
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CORRECTION II: SPIN-ORBIT COUPLING

Interaction between magnetic moment of spin of electron

𝜇𝑠 = −𝑔𝜇𝐵 ⃗𝑆, 𝜇𝐵 = 𝑒
2𝑚, 𝑔 = 2

with the magnetic field generated by the angular momentum
(Biot-Savart)[1]

𝐵⃗ = ⃗𝑣 × ⃗𝐸

→ energy of magnetic moment in ”external” B-field:

𝐻2 = − ⃗𝜇 ⋅ 𝐵⃗ = 𝑒
𝑚

⃗𝑆 ⋅ ( ⃗𝑣 × ⃗𝐸) = 1
𝑟

𝜕𝑉 (𝑟)
𝜕𝑟 𝐿⃗ ⋅ ⃗𝑆 = 1

𝑟3 𝐿⃗ ⋅ ⃗𝑆
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CORRECTION III: DARWIN TERM

Caused by the Zitterbewegung (vibration which obeys relativistic
wave equation) of the electron. Position varies by reduced Compton
wave length

𝛿𝑟 = 𝜆𝐶
2𝜋 = 1

𝑚
Electrostatic interaction of electron with potential no longer local,
”smearing” of the Coulomb interaction between electron and
nucleus:

𝐻3 = 𝑒
8𝑚2 ΔΦ

→ Interference between positive- and negative-energy wave
components
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PHYSICAL INTERPRETATION: ENERGY LEVELS

First order pertubation theoretical correction:

𝐸 = 𝐸𝑛,𝑙,𝑗=𝑙± 1
2

± Δ𝐸𝑛,𝑙,𝑗=𝑙± 1
2

Δ𝐸𝑛,𝑙,𝑗=𝑙± 1
2

= 𝑅𝑦𝑍2

𝑛2
(𝑍𝛼)2

𝑛2 (3
4 − 𝑛

𝑗 + 1
2

)

⇒ Fine structure! (∼ 𝛼2)
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PHYSICAL INTERPRETATION: FINE STRUCTURE

Figure 1: Consecutively finer splittings of the energy levels [3]
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Summary



SUMMARY

We’ve followed the following steps in this talk:

1. Find Ansatz for Hermitian 𝑆
2. Unitary transformation of Hamiltonian
3. Discard odd terms whenever possible
4. Repeat steps 1 - 3 if necessary
5. Decouple Hamiltonian and thus Dirac equation

to mathematically reaffirm known correction terms:

𝐻1 = −( ⃗𝑝2)2

8𝑚3 Relativistic mass correction

𝐻2 = 𝑒
4𝑚2

1
𝑟

𝜕Φ
𝜕𝑟 𝜎⃗ ⋅ 𝐿⃗ Spin-orbit coupling

𝐻3 = 𝑒
8𝑚2 ΔΦ Darwin term
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APPENDIX: THE LAMB SHIFT

Not predicted by Dirac theory, must refer to orbital theory. Deviation
of energy levels of 2𝑆1/2 and 2𝑃1/2 orbitals by

⟨ΔΦ⟩ = 𝛼5𝑚
6𝜋 𝑙𝑜𝑔( 1

𝜋𝛼) ∼ 4.37𝜇𝑒𝑉

Caused by interactions between virtual photons and movement of
electron in-between the two orbitals.
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APPENDIX: HYPERFINE CORRECTIONS

Not predicted by Dirac theory. Interaction between the magnetic
moment of nucleus and the magnetic moment of electron (spin-spin
interaction)

𝐻𝐻𝐹 = 𝑒2𝑔
2𝜋𝜀0𝜇𝐾𝑚

⃗𝑆 ⋅ (− ⃗𝐼Δ1
𝑟 + ∇⃗( ⃗𝐼 ⋅ ∇⃗)1

𝑟 )

⇒ Δ𝐸 ∼ 𝛼4 𝑚
𝑀

Results in a splitting 1000 times more fine.
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APPENDIX: SPLITTINGS OF ENERGY LEVELS
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