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Abstract

We present a quick physical derivation of the Atiyah-Singer index theorem using N = 1
supersymmetric quantum mechanics.
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1 Lightning fast introduction to SUSY QM

So far, the theory of supersymmetry has failed to be validated in a real experimental setting.
However, the lack of practicality of this framework is more than compensated by the rich
theoretic and mathematical insights one can gain while studying this theory. A prominent
example is one of many ways one may derive or prove the Atiyah-Singer index theorem, which
we will discuss here.

1.1 The spectrum of supercharges

Definition 1.1. By slight abuse of convention, we call a Hamiltonian H supersymmetric if
there exists an operator Q called supercharge such that

H =
1

2
{Q,Q†} and Q2 = 0 .

Proposition 1.2. The energy eigenvalues of a supersymmetric Hamiltonian are non-negative.
Further, the energy is zero, called a ground state ψ, if and only if |ψ⟩ is annihilated by both Q
and Q†.

Proof. Let ψ be a state in the Hilbert space. Then

E = ⟨ψ|H|ψ⟩ = 1

2
⟨ψ|Q†Q+QQ†|ψ⟩ = |Q|ψ⟩|2 + |Q†|ψ⟩|2 ≥ 0 ,

and E = 0 ⇐⇒ Q|ψ⟩ = Q†|ψ⟩ = 0.

Lemma 1.3. Consider the set of states with some fixed energy E, H|ψ⟩ = E|ψ⟩. Then
[H,Q] = [H,Q†] = 0.

Proof. Using that Q and Q† square to zero, we have

2H = QQ† +Q†Q =⇒ 2HQ = QQ†Q = Q
(
{Q,Q†} −QQ†) = 2QH .

The whole idea of supersymmetry is that there are two types of particles, bosons and
fermions, and that they behave fundamentally different (indeed they do, they follow different
statistics, and the Pauli exclusion principle holds only to fermions).

Remark 1.4. For fixed E > 0, we introduce the normalised notion of the supercharge c =
Q/

√
2E, with {c, c†} = 1 (and of course c2 = (c†)2 = 0). This is the algebra formed by

fermionic creation and annihilation operators, where we denote the basis of the two-dimensional
irreducible representation by the states |0⟩ and |1⟩ (they span the representation). We have
c|0⟩ = 0 and c†|0⟩ = |1⟩.

Since H and Q commute, H and c commute. Hence have |0⟩ and |1⟩ the same energy
eigenvalue E > 0, but as we will see shortly, with differing fermionic number.

Corollary 1.5. All excited (E > 0) states come in pairs. This holds generally not for ground
(E = 0) states |Ω⟩, since by Prodopsition 1.2 necessarily Q|Ω⟩ = Q†|Ω⟩ = 0 and hence
c|Ω⟩ = c†|Ω⟩ = 0, so we cannot automatically create new states with energy equal zero.
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1.2 Bosons and fermions

Definition 1.6. For E > 0, we define the fermion number operator as F = c†c. The
operator (−1)F is called fermion parity.

Lemma 1.7. F obeys [F,Q] = −Q, [F,Q†] = Q†, [F,H] = 0, F |0⟩ = 0 and F |1⟩ = |1⟩.

Corollary 1.8. The Hilbert space decomposes into bosonic states with F = 0 and fermionic
states with F = 1, H = HB ⊕HF .

Remark 1.9. This is a Z2 grading of the Hilbert space. The E > 0 states have one state in
HB and one state in HF . It is not yet clear which of the spaces we should assign the E = 0
states to.

Corollary 1.10. The unitary operator (−1)F is involute (it squares to the identity), takes
eigenvalue +1 on states in HB and eigenvalue −1 on states in HF . Equivalently, it commutes
with bosonic operators and anticommutes with fermionic operators.

Remark 1.11. A physical potential can be modelled or at least approximated by a real polyno-
mial h. Varying the parameters of h continuously results in a change of the energy spectrum
of the Hamiltonian, with the exception of the ground states. They are in a sense very stable.

2 The Witten index

2.1 Mathematical interlude

Remark 2.1. Mathematically, the difference between the physical behaviour between bosons
and fermions can be made clear as well. The classic example of a Z2 graded vector space is
Rp|q ∼= Rp⊕Rq, where declare elements of Rp to have parity 0 and element of Rq to have parity
1 (hence the parity operation is given by F ). To turn Rp|q into a superalgebra, we require

[xi, xj ] = 0 , [xi, ψa] = 0 , and {ψa, ψb} = 0 ,

where we call xi ∈ Rp|0 bosonic and ψa ∈ R0|q fermionic. Bosons are standard, real variables,
while fermions are so-called (complex) Grassmann variables. If we impose ψ̄ = ψ, we call
them Majorana modes. For Rp|q, ∂/∂xi (the usual derivative on Rp) are even derivatives,
while ∂/∂ψa are odd derivatives, with

∂xj

∂xi
= δji

∂ψb

∂ψa
= δba

∂xj

∂ψa
=
∂ψb

∂xi
= 0

and
∂

∂ψa
(ψbψc) = δbaψ

c − ψbδca .

Remark 2.2. One of the most significant differences between bosons and fermions is the
following. Let D be a generic differential operator. Then the Gaussian integral for bosonic
variables is

∫
e−x

iDxj ∼
√

1/det(D), and for fermionic variables is
∫
e−ψ

aDψb ∼ ±
√
det(D).
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2.2 The many forms of the Witten index

Definition 2.3. The Witten index of a theory is the difference between the number of
bosonic and fermionic ground states,

I ≡ Tr
(
(−1)F e−βH

)
This formula needs quite a bit of unpacking. First of all, we are taking this trace over the

whole Hilbert space. Notice that the fermion parity causes the sign of the values to alternate,
depending on whether the state is bosonic or fermionic.

Secondly, the exponential is very close to the time evolution operator e−itH , which as the
name suggests, describes how a wavefunction evolves over time. We will often use the procedure
of turning the time imaginary, t→ −iτ , which is called a Wick rotation, with τ the Euclidean
time. Hence the operator describes the evolution to the Euclidean time τ = β1. There is a
very surprising result to consider.

Lemma 2.4. The index is independent of β,

dI
dβ

= 0 .

This is clear for the excited states, as the factor of (−1)F ensures that their contributions
cancel out.

The ground states generally do not cancel, but contrary to the excited states, are not sensitive
to the value of β (compare this to Remark 1.11).

Lemma 2.5. Formally, we have the isomorphism

HB

∣∣∣
E>0

∼= HF

∣∣∣
E>0

.

Corollary 2.6. The Witten index counts the difference in the number of ground states in both
subspaces [1],

I = dimH0,B − dimH0,F = nE=0
B − nE=0

F .

Proposition 2.7. Let Â be any operator, |η⟩ = e
ˆ̄ψη|0⟩ and ⟨η̄| = ⟨0|eψ̂η̄| be the fermionic

coherent states.
The following identities hold:

1H =

∫
e−η̄η|η⟩⟨η̄|d2η and ⟨η̄|η⟩ = eη̄η ,

Tr
(
A
)
H =

∫
e−η̄η⟨−η̄|A|η⟩d2η ,

STr(A)H = Tr
(
(−1)FA

)
=

∫
e−η̄η⟨η̄|A|η⟩d2η

1Compare this to the "inverse temperature" in statistical mechanics.
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Proposition 2.8. Let H a supersymmetric Hamiltonian, S its associated action depending
on a collection of bosonic and fermionic variables ϕ. Then, ∀β > 0,

Tr
(
(−1)F e−βH

)
=

∫
P
e−S[ϕ]Dϕ ,

where P the space of all paths over periodic Euclidean time [2].

Proof. Let χ describe a coherent state. The amplitude (heat kernel) for them is defined by
⟨χ̄′|e−βH |χ⟩. Let the Euclidean time β = N∆τ . By non-trivially commuting if necessary, we
get

⟨χ̄′|e−βH( ˆ̄ψ,ψ̂)|χ⟩ = ⟨χ̄′|e−∆τH . . . e−∆τH |χ⟩ = ⟨χ̄′|e−∆τH1He
−∆τH . . . 1He

−∆τH |χ⟩

=

∫
⟨χ̄′|e−∆τH |ηN−1⟩⟨η̄N−1|e−∆τH |ηN−2⟩ . . . ⟨η̄1|e−∆τH |χ⟩

N−1∏
k=1

e−η̄kηkd2ηk

= lim
N→∞

∫
exp

( N∑
k=1

η̄kηk−1 −∆τH(η̄k, ηk−1)

)N−1∏
k=1

e−η̄kηkd2ηk

= lim
N→∞

∫
exp

(
−

N∑
k=1

[
η̄k
ηk − ηk−1

∆τ
+H(η̄k, ηk−1)

]
∆τ

)
eη̄NηN

N−1∏
k=1

d2ηk

=

∫
e−SE [ψ,ψ̄]eψ̄(β)ψ(β)DψDψ̄

using in the third line that |ηk⟩ and ⟨η̄k| are eigenstates of ψ̂ and ˆ̄ψ, respectively, thus for
infinitesimal ∆τ

⟨η̄k+1|e−∆τH( ˆ̄ψ,ψ̂)|ηk⟩ = e−∆τH(η̄k+,ηk)⟨η̄k+1|ηk⟩ = e−∆τH(η̄k+,ηk)eη̄k+1ηk ,

and in the fifth line that the inside of the square bracket in the fourth line corresponds to a
discretisation of the Euclidean action,

SE [η, η̄] =

∫ β

0

[
η̄η̇ +H(η̄, η)

]
dτ .

In the final integral, we integrate over all ψ(τ) s.t. ψ(0) = χ and ψ(β) = χ′.
So, in total, we have

STr(e−βH)H = Tr
(
(−1)F e−βH

)
=

∫
e−η̄η⟨η̄|e−βH |η⟩d2η

=

∫
e−SE [ψ,ψ̄]DψDψ̄

where we formally integrate over all ψ(τ) s.t. ψ(0) = χ and ψ(β) = χ′.
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A similar result for bosonic variables can be shown in the same vein, so combining them
yields

Tr
(
(−1)F e−βH

)
=

∫
P
e−SE [x,ψ,ψ̄]DxDψDψ̄

where since we are taking the trace, we really should only be considering ψ(τ) with ψ(0) =
ψ(β) (similar for x). This is equivalent of taking the integral is over fields living on a circle of
circumference β, i.e. the fermions and bosons that are periodic around the S1 worldline. This
is called the path integral representation of the Witten index.

3 Non-linear σ-models

To set the stage, let (N, g) be a (compact) Riemannian manifold with dim N = n. We
denote by xa the local coordinates for N , with a = 1, . . . , n.

Consider the nonlinear σ-model2, which classically describes a field taking values on a non-
linear manifold. The reason for this is that the only spinors that solve the free Dirac equation
/∂χ = 0 in flat space are constant, hence unphysical. The supersymmetric extension of this
action involves ψa be n different complex fermions.

We may assume ψ̄ = ψ, which corresponds to N = 1 (N = 1/2) supersymmetry, a system
where we have a single real conserved supercharge Q.

Proposition 3.1. Let ψ̄ = ψ. Then the (Euclidean) action of the non-linear σ-model simplifies
to

SE [x, ψ] =

∫
1

2
gabẋ

aẋb +
1

2
gabψ

a∇τψ
bdτ .

with

∇τψ
a =

d

dτ
ψa + Γabc

dxb

dτ
ψc

the covariant derivative. The first term describes the bosonic, the second term the fermionic
kinetic energy, R the Riemann curvature of N .

Theorem 3.2. The conserved supercharge is the Dirac operator,

Q = ψapa = i /D

and the Hamiltonian is H = Q2 = − /D
2.

Remark 3.3. Formally, the Hilbert space of the bosonic field is the space of square-integrable
functions on N with respect to the measure √

gdnx, HB = L2(N,
√
gdnx). The natural quanti-

zation of the fermionic fields ψ is the space of Dirac spinors Hψ = S, with the fermions acting
as Dirac γ-matrices (since they both follow the Clifford algebra). Thus in total, the Hilbert
space is

H = HB ⊕HF
∼= L2(S(N),

√
gdnx) ,

the space of square-integrable sections of the spin bundle on N .
2σ denotes a generic spinless meson
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Lemma 3.4. For a valid quantum theory, we require the number of Majorana modes to be
even [3].

Proof. From Remark 1.4 we know that two Majorana modes ψ1, ψ2 act on a 2-dimensional
Hilbert space (since c† = (ψ1 − iψ2)/

√
2 acts as raising operator), with H1,2 = H1 ⊗H2. By

the Hilbert space tensor product rule, 2 = dimH1,2 = dimH1 · dimH2. So in a sense, a single
Majorana mode acts on a "

√
2-dimensional Hilbert space". In particular in our framework,

we cannot allow an odd number of Majorana modes.

Hence for our purposes, from now on we assume dim N = n = 2m to be even. In particular,
we require the number of Majorana modes to be even. This means that we can split the space
of the Dirac spinors into +1 and -1 eigenspace of the chirality operator. This can be written
as γn+1 ≡ in/2γ1 . . . γn and further be identified as (−1)F . In summary, we decompose the
space of Dirac spinors as S = S+ ⊕ S−.

Remark 3.5. We have the vielbein eia up to SO(n) as gab = δije
i
ae
j
b which defines an or-

thonormal frame at each p ∈ N , with inverse eai . Introduce spin connection 1-form ωij by
requiring

∇ae
i
b = ∂ae

i
b − Γcabe

i
c + ωiaje

j
b = 0

thus
wiaj =

1

2
ebj(∂ae

i
b − ∂be

i
a)−

1

2
ebi(∂aebj − ∂beaj)−

1

2
ebiecj(∂bekc − ∂cekb)e

k
a .

Note that as usual, the raising and lowering of indices is done by contracting with the metric.
The metric on the tanget space is δij. We define the curved space Dirac operator

/Dψ = γa(∂aψ + ωjka Σjkψ)

to parallel transport spinors on N . Since γn+1 = diag(I,−I) and { /∇, γn+1} = 0 the Dirac
operator maps even spinors to odd spinors and vice versa, we can write

/D =

(
0 /D

−

/D
+

0

)
with respect to the decomposition S = S+ ⊕ S−, with /D

±
: S± → S∓, /D

−
= ( /D

+
)†, and

( /D
+
)2 = ( /D

−
)2 = 0.

Definition 3.6. We define the index of the Dirac operator as

ind /D
+
= dimker( /D

+
)− dimker( /D

−
) .

and we call /D+ the Atiyah-Singer operator.

The crucial observation is now the following: The kernel of /D
+ ( /D−) is the space of all

bosons (fermions) that are mapped to zero, i.e. fulfil the Dirac equation /Dχ = 0. But those
solutions are exactly the ground states of the quantum theory!

Theorem 3.7. The index of the Dirac operator coincides with the Witten index,

ind /D
+
= dimker( /D

+
)−dimker( /D

−
) = nE=0

B −nE=0
F = Tr

(
(−1)F e−βH

)
=

∫
P
e−SE [x,ψ]DxDψ = I .
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4 Derivation of the index theorem

Theorem 4.1 (Atiyah-Singer index theorem). Let N be an even-dimensional spin manifold.
Then

ind /D
+
N =

∫
N
Â
( iRN

2π

)
.

Proof. We want to explicitely compute the path integral representation of the index,

ind /D
+
=

∫
P
e−SE [x,ψ]DxDψ .

As usual, x and ψ periodic implies that the path integral over fields on S1 is independent of
the circumference β.

Thus we can take the limit β → 0, wherein constant field configurations (x0, ψ0) dominate.
This can be seen by rescaling τ → τ/β and ψ → β−1/4ψ. Then for β → 0, the argument −SE
in the exponential does not go to negative infinity if and only if ẋ = ψ̇ = 0. Hence we expand
as xa(τ) = xa0 + δxa(τ), ψa(τ) = ψa0 + δψa(τ), with

∮
δxa(τ)dτ =

∮
δψa(τ)dτ = 0. Using

Riemann normal coordinate expansion for metric and connection,

gab(x) = δab −
1

3
Racbd(x0)δx

cδxd +O(δx3)

Γabc(x) = −1

3
(Rabcd(x0) +Racbd(x0))δx

d +O(δx2) ,

we get

SE [x0, ψ0, δx, δψ] =

∮
−1

2
δxa

d2

dτ2
δxa +

1

2
δψa

d

dτ
δψa − 1

4
Rabcdψ

a
0ψ

b
0δx

cdδx
d

dτ
dτ .

Integrating over the fluctuations, with Ra
b = Rabcd(x0)ψ

c
0ψ

d
0 , gives

Z ≡
∫
e−SE [x0,ψ0,δx,δψ]DδxDδψ =

√
det(δab ∂τ )√

det(−δab ∂2τ +Ra
b∂τ )

=
1√

det(−δab ∂τ +Ra
b )

This integration is not really obvious, but note that we essentially compute the Gaussian
integral of differential operators (compare Remark 2.2).

We can decompose TNx0 into n/2 two-dimensional spaces that are invariant under the action
of Ra

b with restrictions to the k-th subspace W|k,

Ra
b =


W|1

. . .
W|n/2

 with W|k =

(
0 ωk

−ωk 0

)

for some ωk, with eigenvalues ±iωk. We diagonalise the ∂τ term by working in a Fourier basis
around S1. Since the Witten index is independent of β > 0, take β = 1. Then δxk(τ) ∼ e2πipτ
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with p ∈ Z \ 0. Hence the eigenvalues for any W are i(2πp± ω), and

√
det(−∂τ +W) =

∏
p̸=0

√
2πip+ iω

√
2πip− iω =

∞∏
p=1

(2πip)2︸ ︷︷ ︸
=−i

∞∏
p=1

[
1 +

( iω
2πp

)2]
= −isinh(iω/2)

iω/2
,

computing the first product via ζ-function regularisation. Combining all n/2 subspaces in the
reciprocal, we have

Z = (−i)n/2
n/2∏
k=1

iωk/2

sinh(iωk/2)
,

and thus in total,

ind /D
+
=

∫
P
ZDx0Dψ0 = (−i)n/2

∫ n∏
i=1

dxi0dψ
i
0√

2π

n/2∏
k=1

iωk/2

sinh(iωk/2)

since the constant fields are just regular variables. This is now a very familiar expression from
the lecture [4], and we write

ind /D
+
=

1

(2π)n/2

∫
N

√
det

(
R/2

sinh(R/2)

)
=

∫
N
Â
( iRN

2π

)
.
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