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Motivation

Goal: Obtaining approximate solutions of the Schrödinger equation, WKB method.
Developed by Gregor Wentzel, Hendrik Anthony Kramers, and Léon Brillouin in 1926.

Earlier appearances of essentially equivalent methods are from: Francesco Carlini in 1817,
Joseph Liouville and George Green in 1837, Lord Rayleigh in 1912, Richard Gans in 1915,
and Harold Jeffreys in 1923.
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Physical WKB Approximation

Recall the Schrödinger Equation (SE)

iℏ
∂ψ

∂t
= Ĥψ .

with the Schrödinger operator

Ĥ = − ℏ2

2m
∇2 +mV (x)

which has solutions ψ = ψ(x , t) : Rn × R → C. We look for stationary states, i.e.
solutions to the SE of the form

ψ(x , t) = φ(x)e−iωt
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Free particle

Stationary states follow the time-independent SE(
Ĥ − E

)
φ(x) = 0 with E = ℏω

Hence φ an eigenstate of the linear differential operator Ĥ with eigenvalue E , which
represents the energy of the system.
Simplest case: Free particle (V = const. and V ′ = 0). Ansatz:

φ(x) = e ixξ ⇐⇒ ℏ2∥ξ∥2 = 2m(E − V )

for some ξ ∈ Rn.
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Free particle

Example

Free particle for n = 1:

φ(x) = e ixξ ⇐⇒ ℏ2ξ2 = 2m(E − V )

• Case 1: E > V . Then

ξ = ±
√

2m(E − V )

ℏ
∈ R

solutions are oscillatory and bounded, but not square-integrable.

• Case 2: V > E. Then ξ ∼
√
E − V imaginary, hence φ(x) unbounded.
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Phase function ansatz

For more interesting examples, we must assume V ′ ̸= 0.

Basic idea of WKB

If V varies (slowly) with x , so should ξ vary with x −→ de Broglie wavelength λ≪ V /V ′

Replace ξ ∈ Rn with the real-valued phase function S(x), ansatz φ(x) = e iS(x)/ℏ.
Plugging the ansatz into the time-independent SE, we get

(Ĥ − E )φ(x) =

[
∥∇S(x)∥2

2m
+
(
V (x)− E

)
− iℏ

2m
∆S(x)

]
φ(x)

!
= O(ℏ1)

Note that φ(x) = O(ℏ0).
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Phase function ansatz

This implies

Hamilton-Jacobi equation

H
(
x1, . . . , xn,

∂S

∂x1
, . . . ,

∂S

∂xn

)
≡ ∥∇S(x)∥2

2m
+ V (x)

!
= E

Definition

We call a phase function S : Rn → R admissible if it satisfies the Hamilton-Jacobi
equation.

We then also write
(Ĥ − E )φ = O(ℏ) ,

because the error is of order ℏ, i.e. φ an eigenstate of Ĥ with eigenvalue E modulo order
ℏ.
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Semi-classical approximation

How to improve accuracy in terms of ℏ? Cannot choose better S , as physically
|φ(x)|2 = |e iS(x)/ℏ| = 1 (probability density) is too restrictive −→ multiply ansatz by an
amplitude function,

φ(x) = e iS(x)/ℏa(x)

Let S be admissible. Plugging ansatz in:

(Ĥ − E )φ(x) = − 1

2m

[
iℏa∆S + 2iℏ(∇S) · (∇a) + ℏ2∆a− a

������������:0(
∥∇S∥2 + 2m(V − E )

) ]
e iS/ℏ

= − 1

2m

[
iℏ
(
a∆S + 2(∇S · ∇a)

)
+ ℏ2∆a

]
e iS/ℏ

!
= O(ℏ2) ,

hence a(x) needs to satisfy the

Homogeneous transport equation

a∆S + 2∇S · ∇a = 0 .
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Semi-classical approximation

Definition

We call φ = e iS/ℏa with S(x) admissible and a(x) satisfying the homogeneous transport
equation the semi-classical approximation.

Example

For n = 1, we can solve directly the Hamilton-Jacobi equation

S ′(x) = ±
√

2m
(
E − V (x)

)
,

as well as the homogeneous transport equation

aS ′′ + 2a′S ′ !
= 0 =⇒ (a2S ′)′ = 0

=⇒ a =
c√
S ′

=
c(

2m(E − V )
)1/4 .
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Generalisation

Extend the preceding procedure to arbitrary degree of precision:

φ(x) = e iS(x)/ℏ
(
a0(x) + ℏa1(x)

)
Let e iS/ℏa0 be a semi-classical approximation. Then

(Ĥ − E )φ(x) = − 1

2m

[
iℏ2

(
a1∆S + 2(∇S · ∇a1)− i∆a0

)
+ ℏ3∆a1

]
e iS/ℏ

!
= O(ℏ3) ,

hence a1 needs to satisfy the

Inhomogeneous transport equation

a1∆S + 2∇S · ∇a1 = i∆a0 .
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Generalisation

In general, a solution to the eigenstate problem modulo terms of order O(ℏn) is given by
a WKB ansatz of the form

φ = e iS/ℏ
n∑

k=0

akℏk

→ asymptotic series, where S is admissible (satisfies the Hamilton-Jacobi equation), a0
satisfies the homogeneous transport equation, and ak satisfies the inhomogeneous
transport equation

ak∆S + 2∇S · ∇ak = i∆ak−1 .

for all k = 1, . . . , n

With this method from QM, we now turn to geometric considerations from CM.
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Geometry of the WKB method

Figure: Source: Peter Mann - Lagrangian and Hamiltonian dynamics
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Geometry of admissible phase functions

Geometrical consideration of the phase function S for n = 1:

• Classical phase space/plane T ∗R ∼= R with coordinates (q, p)

• View dS = S ′dx : R → T ∗R as 1-form, p = S ′ =
√

2m
(
E − V (x)

)
• Generally: S admissible ⇐⇒ L ≡ im(dS) ⊆ H−1(E )

Fundamental link between CM and QM

When the image of dS lies in a level manifold of the classical hamiltonian, S may be
viewed as the phase function of a first-order approximate solution of the SE.
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Geometry of admissible phase functions

The image L = im(dS) fulfils the following:

1. L is an n-dimensional submanifold of H−1(E )

2. The pullback of Poincaré-Cartan form θ = pidq
i on T ∗Rn to L is exact

3. The restriction of the canonical projection π∗ : T ∗Rn → Rn to L induces a
diffeomorphism L ∼= Rn

Corollary

L is a lagrangian submanifold of H−1(E ).

This is too restrictive! General L are not projectable, and θ is only closed.
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Geometry of admissible phase functions

Example

For 1D oscillator, level sets of hamiltonian are lagrangian submanifolds in the phase
plane, specifically ellipses. Pull-back of pdq is closed but not exact. Recall that S1 ≇ R.
Oscillator still described by trajectory → classically, state of system represented by L
(projectable or not) rather than by the phase function S.

Figure: Source: Wikipedia

Starting point of geometrical approach to microlocal analysis.
18 / 21



Symplectic formulation of Hamilton-Jacobi

Recall: for hamiltonian function H : T ∗Rn ∼= R2n → R, hamiltonian vector field is

XH = q̇
∂

∂q
+ ṗ

∂

∂p
=
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p

Let ω be the canonical symplectic form on the phase space. Then:

Geometric Hamilton-Jacobi equation

ιXH
(ω) = dH

→ Blackboard

Coordinate-free representation of Hamilton’s equation, which we retrieve locally.
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Symplectic formulation of Hamilton-Jacobi

• L ⊆ H−1(E ) =⇒ TL ⊆ ker(dH) ⇐⇒ ω = dqi ∧ dpi vanishes on subspace of
Tp(T

∗Rn) gen. by TpL and XH(p) for all p ∈ L

• Restriction of ω to Tp(T
∗Rn) at any p is a symplectic form

• Subspaces of Tp(T
∗Rn) on which ω vanishes are at most of dimension n

• XH is tangent to L

Hamilton-Jacobi theorem

A function H : R2n → R is locally constant on a lagrangian submanifold L ⊂ R2n if and
only if the hamiltonian vector field XH is tangent to L.

Corollary

L locally closed =⇒ L is invariant under the flow of XH
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The End
Thank you for your attention!
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Geometry of transport equation

We have seen the geometric formulation of the first-order WKB approximation φ = e iS/ℏ

in form of the Geometric HJ equation and the HJ theorem.

We can extend this to the semi-classical approximation φ = e iS/ℏa(x). Recall:

Homogeneous transport equation

a∆S + 2∇S · ∇a = 0

Multiplying by a yields
∇
(
a2∇S

)
= 0

as a condition of that vector field → lift to L = im(dS).

3 / 11



Geometry of transport equation

For H(q, p) =
∑

pi/2 + V (q), we have the restriction

XH |L =
∑
j

(
∂S

∂xj

∂

∂qj
− ∂V

∂qj

∂

∂pj

)
.

The projection XH |L onto Rn (with coordinates x), denoted X
(x)
H yields ∇S , hence the

homogeneous transport equation

a∆S + 2
∑
j

∂a

∂xj

∂S

∂xj
= 0

tells us that ∇(a2X
(x)
H ) = 0
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Geometry of transport equation

We can reformulation a2X
(x)
H being divergence-free as

L(X (x)
H (a2|dx |)) = 0 ,

with |dx | = |dx1 ∧ · · · ∧ dxn| the canonical density on Rn.

Equation equivalent to the fact that the pull-back of a2|dx | to L via π is invariant under
flow of XH (since XH tangent to L, Lie derivative invariant under diffeomorphism).

Geometric interpretation. . .

. . . of a as a half-density on L invariant by XH .

Hence, a geometric semi-classical state is a lagrangian submanifold L of R2n equipped
with a half-density a.
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Geometry of transport equation

Example

For 1D oscillator, stationary classical states are L = H−1(E ) ⊂ R2n. Up to constant,
there is a unique invariant volume element for the hamiltonian flow of H on every level
curve of H. Hence an L with the square root of the volume element constitutes a
semi-classical stationary state for the harmonic oscillator.
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Application example in quantum mechanics

Recall:

Definition

We call φ = e iS/ℏa with S(x) admissible and a(x) satisfying the homogeneous transport
equation the semi-classical approximation.

Example

For n = 1, we can solve directly for the phase

S ′(x) = ±
√
2m

(
E − V (x)

)
= p ,

and the amplitude

a =
c√
S ′

=
c(

2m(E − V )
)1/4 .
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Application example in quantum mechanics

The first-order WKB approximation only works for p sufficiently large, and breaks down
at turning points. Here, we need the semi-classical approximation.

Figure: Source: Massimiliano Grazzini, Quantum Mechanics I
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Application example in quantum mechanics

We approximate the general semi-classical state

ψ(x) ∼ 1
√
p
e±

i
ℏ
∫
pdx

by approximating the potential close to the turning point

E − V (x) ∼ −V ′(x0)(x − x0) .

Via analytic continuation, this leads us to:

Quantisation condition

1

2πℏ

∮
pdx = n +

1

2
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Application example in quantum mechanics

Example

The quantisation condition can be used to derive the (discrete!) spectrum of the
harmonic oscillator, V (x) = 1

2mω
2x2. Solving

1

2πℏ

∮ √
2m

(
E − V (x)

)
dx =

√
2m

πℏ

∫ x0

−x0

√(
E − 1

2
mω2x2

)
dx

!
= n +

1

2

(with x0 +
√

2E
mω2 ) for the energy yields

En = ℏω
(
n +

1

2

)
.
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