

The WKB Method

MAT633 Mathematical Field Theory Exam

Marvin Sigg

Institute of Mathematics
University of Zurich

February 3, 2025

Motivation

Goal: Obtaining approximate solutions of the Schrödinger equation, WKB method.
Developed by Gregor Wentzel, Hendrik Anthony Kramers, and Léon Brillouin in 1926.
Earlier appearances of essentially equivalent methods are from: Francesco Carlini in 1817,
Joseph Liouville and George Green in 1837, Lord Rayleigh in 1912, Richard Gans in 1915,
and Harold Jeffreys in 1923.

Motivation

Goal: Obtaining approximate solutions of the Schrödinger equation, WKB method.
Developed by Gregor Wentzel, Hendrik Anthony Kramers, and Léon Brillouin in 1926.
Earlier appearances of essentially equivalent methods are from: Francesco Carlini in 1817,
Joseph Liouville and George Green in 1837, Lord Rayleigh in 1912, Richard Gans in 1915,
and Harold Jeffreys in 1923.

WKB $\xrightarrow{?}$ CLGRGJWKB

Overview

1. Physical WKB Approximation

- 1.1 Free particle
- 1.2 Phase function ansatz
- 1.3 Semi-classical approximation
- 1.4 Generalisation

2. Geometry of the WKB method

- 2.1 Geometry of admissible phase functions
- 2.2 Symplectic formulation of Hamilton-Jacobi

Overview

1. Physical WKB Approximation

- 1.1 Free particle
- 1.2 Phase function ansatz
- 1.3 Semi-classical approximation
- 1.4 Generalisation

2. Geometry of the WKB method

- 2.1 Geometry of admissible phase functions
- 2.2 Symplectic formulation of Hamilton-Jacobi

Physical WKB Approximation

Recall the Schrödinger Equation (SE)

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi.$$

with the Schrödinger operator

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + mV(x)$$

which has solutions $\psi = \psi(x, t) : \mathbb{R}^n \times \mathbb{R} \rightarrow \mathbb{C}$. We look for stationary states, i.e. solutions to the SE of the form

$$\psi(x, t) = \varphi(x) e^{-i\omega t}$$

Free particle

Stationary states follow the time-independent SE

$$(\hat{H} - E)\varphi(x) = 0 \quad \text{with} \quad E = \hbar\omega$$

Hence φ an eigenstate of the linear differential operator \hat{H} with eigenvalue E , which represents the energy of the system.

Simplest case: Free particle ($V = \text{const.}$ and $V' = 0$). Ansatz:

$$\varphi(x) = e^{ix\xi} \iff \hbar^2 \|\xi\|^2 = 2m(E - V)$$

for some $\xi \in \mathbb{R}^n$.

Example

Free particle for $n = 1$:

$$\varphi(x) = e^{ix\xi} \iff \hbar^2 \xi^2 = 2m(E - V)$$

- Case 1: $E > V$. Then

$$\xi = \pm \frac{\sqrt{2m(E - V)}}{\hbar} \in \mathbb{R}$$

solutions are oscillatory and bounded, but not square-integrable.

- Case 2: $V > E$. Then $\xi \sim \sqrt{E - V}$ imaginary, hence $\varphi(x)$ unbounded.

Phase function ansatz

For more interesting examples, we must assume $V' \neq 0$.

Basic idea of WKB

If V varies (slowly) with x , so should ξ vary with x \rightarrow de Broglie wavelength $\lambda \ll V/V'$

Replace $\xi \in \mathbb{R}^n$ with the real-valued phase function $S(x)$, ansatz $\varphi(x) = e^{iS(x)/\hbar}$.

Plugging the ansatz into the time-independent SE, we get

$$(\hat{H} - E)\varphi(x) = \left[\frac{\|\nabla S(x)\|^2}{2m} + (V(x) - E) - \frac{i\hbar}{2m} \Delta S(x) \right] \varphi(x) \stackrel{!}{=} \mathcal{O}(\hbar^1)$$

Note that $\varphi(x) = \mathcal{O}(\hbar^0)$.

Phase function ansatz

This implies

Hamilton-Jacobi equation

$$H\left(x_1, \dots, x_n, \frac{\partial S}{\partial x_1}, \dots, \frac{\partial S}{\partial x_n}\right) \equiv \frac{\|\nabla S(x)\|^2}{2m} + V(x) \stackrel{!}{=} E$$

Definition

We call a phase function $S : \mathbb{R}^n \rightarrow \mathbb{R}$ **admissible** if it satisfies the Hamilton-Jacobi equation.

We then also write

$$(\hat{H} - E)\varphi = \mathcal{O}(\hbar),$$

because the error is of order \hbar , i.e. φ an eigenstate of \hat{H} with eigenvalue E modulo order \hbar .

Semi-classical approximation

How to improve accuracy in terms of \hbar ? Cannot choose better S , as physically $|\varphi(x)|^2 = |e^{iS(x)/\hbar}| = 1$ (probability density) is too restrictive \rightarrow multiply ansatz by an amplitude function,

$$\varphi(x) = e^{iS(x)/\hbar} a(x)$$

Let S be admissible. Plugging ansatz in:

$$\begin{aligned} (\hat{H} - E)\varphi(x) &= -\frac{1}{2m} \left[i\hbar a \Delta S + 2i\hbar (\nabla S) \cdot (\nabla a) + \hbar^2 \Delta a - a \left(\underbrace{\|\nabla S\|^2}_{0} + 2m(V - E) \right) \right] e^{iS/\hbar} \\ &= -\frac{1}{2m} \left[i\hbar \left(a \Delta S + 2(\nabla S \cdot \nabla a) \right) + \hbar^2 \Delta a \right] e^{iS/\hbar} \stackrel{!}{=} \mathcal{O}(\hbar^2), \end{aligned}$$

hence $a(x)$ needs to satisfy the

Homogeneous transport equation

$$a \Delta S + 2 \nabla S \cdot \nabla a = 0.$$

Semi-classical approximation

Definition

We call $\varphi = e^{iS/\hbar} a$ with $S(x)$ admissible and $a(x)$ satisfying the homogeneous transport equation the **semi-classical approximation**.

Example

For $n = 1$, we can solve directly the Hamilton-Jacobi equation

$$S'(x) = \pm \sqrt{2m(E - V(x))},$$

as well as the homogeneous transport equation

$$\begin{aligned} aS'' + 2a'S' &\stackrel{!}{=} 0 \implies (a^2 S')' = 0 \\ \implies a &= \frac{c}{\sqrt{S'}} = \frac{c}{(2m(E - V))^{1/4}}. \end{aligned}$$

Generalisation

Extend the preceding procedure to arbitrary degree of precision:

$$\varphi(x) = e^{iS(x)/\hbar} (a_0(x) + \hbar a_1(x))$$

Let $e^{iS/\hbar} a_0$ be a semi-classical approximation. Then

$$(\hat{H} - E)\varphi(x) = -\frac{1}{2m} \left[i\hbar^2 \left(a_1 \Delta S + 2(\nabla S \cdot \nabla a_1) - i\Delta a_0 \right) + \hbar^3 \Delta a_1 \right] e^{iS/\hbar} \stackrel{!}{=} \mathcal{O}(\hbar^3),$$

hence a_1 needs to satisfy the

Inhomogeneous transport equation

$$a_1 \Delta S + 2\nabla S \cdot \nabla a_1 = i\Delta a_0.$$

Generalisation

In general, a solution to the eigenstate problem modulo terms of order $\mathcal{O}(\hbar^n)$ is given by a WKB ansatz of the form

$$\varphi = e^{iS/\hbar} \sum_{k=0}^n a_k \hbar^k$$

→ asymptotic series, where S is admissible (satisfies the Hamilton-Jacobi equation), a_0 satisfies the homogeneous transport equation, and a_k satisfies the inhomogeneous transport equation

$$a_k \Delta S + 2\nabla S \cdot \nabla a_k = i\Delta a_{k-1}.$$

for all $k = 1, \dots, n$

With this method from QM, we now turn to geometric considerations from CM.

Overview

1. Physical WKB Approximation

- 1.1 Free particle
- 1.2 Phase function ansatz
- 1.3 Semi-classical approximation
- 1.4 Generalisation

2. Geometry of the WKB method

- 2.1 Geometry of admissible phase functions
- 2.2 Symplectic formulation of Hamilton-Jacobi

Geometry of the WKB method

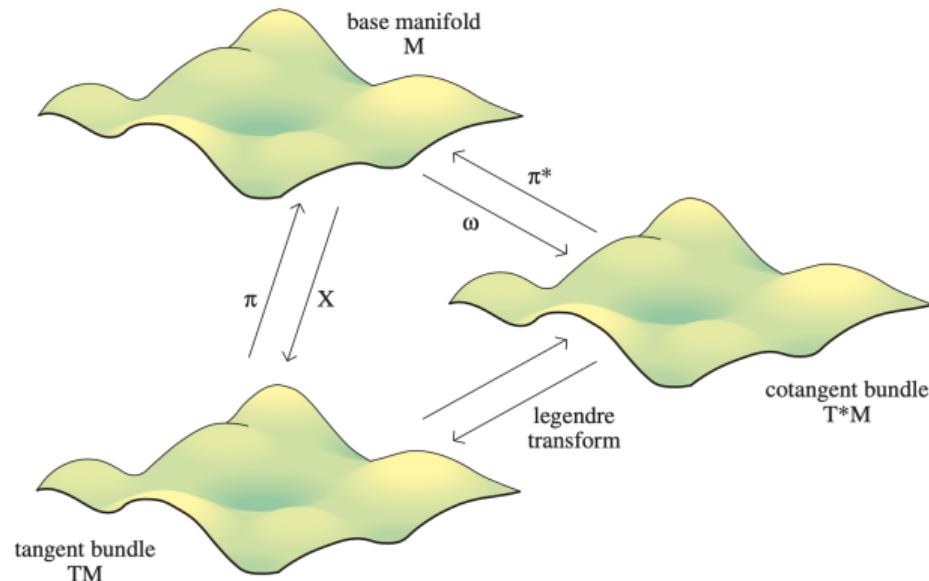


Figure: Source: Peter Mann - Lagrangian and Hamiltonian dynamics

Geometry of admissible phase functions

Geometrical consideration of the phase function S for $n = 1$:

- Classical phase space/plane $T^*\mathbb{R} \cong \mathbb{R}$ with coordinates (q, p)
- View $dS = S'dx : \mathbb{R} \rightarrow T^*\mathbb{R}$ as 1-form, $p = S' = \sqrt{2m(E - V(x))}$
- Generally: S admissible $\iff L \equiv \text{im}(dS) \subseteq H^{-1}(E)$

Fundamental link between CM and QM

When the image of dS lies in a level manifold of the classical hamiltonian, S may be viewed as the phase function of a first-order approximate solution of the SE.

Geometry of admissible phase functions

The image $L = \text{im}(dS)$ fulfils the following:

1. L is an n -dimensional submanifold of $H^{-1}(E)$
2. The pullback of Poincaré-Cartan form $\theta = p_i dq^i$ on $T^*\mathbb{R}^n$ to L is exact
3. The restriction of the canonical projection $\pi^* : T^*\mathbb{R}^n \rightarrow \mathbb{R}^n$ to L induces a diffeomorphism $L \cong \mathbb{R}^n$

Corollary

L is a lagrangian submanifold of $H^{-1}(E)$.

This is too restrictive! General L are not projectable, and θ is only closed.

Geometry of admissible phase functions

Example

For **1D oscillator**, level sets of hamiltonian are lagrangian submanifolds in the phase plane, specifically ellipses. Pull-back of pdq is closed but not exact. Recall that $S^1 \not\cong \mathbb{R}$. Oscillator still described by trajectory \rightarrow classically, state of system represented by L (projectable or not) rather than by the phase function S .

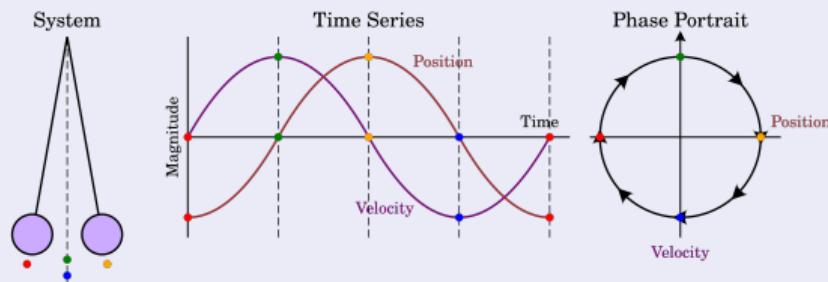


Figure: Source: Wikipedia

Starting point of geometrical approach to **microlocal analysis**.

Symplectic formulation of Hamilton-Jacobi

Recall: for hamiltonian function $H : T^*\mathbb{R}^n \cong \mathbb{R}^{2n} \rightarrow \mathbb{R}$, hamiltonian vector field is

$$X_H = \dot{q} \frac{\partial}{\partial q} + \dot{p} \frac{\partial}{\partial p} = \frac{\partial H}{\partial p} \frac{\partial}{\partial q} - \frac{\partial H}{\partial q} \frac{\partial}{\partial p}$$

Let ω be the canonical symplectic form on the phase space. Then:

Geometric Hamilton-Jacobi equation

$$\iota_{X_H}(\omega) = dH$$

→ Blackboard

Coordinate-free representation of Hamilton's equation, which we retrieve locally.

Symplectic formulation of Hamilton-Jacobi

- $L \subseteq H^{-1}(E) \implies TL \subseteq \ker(dH) \iff \omega = dq^i \wedge dp_i$ vanishes on subspace of $T_p(T^*\mathbb{R}^n)$ gen. by $T_p L$ and $X_H(p)$ for all $p \in L$
- Restriction of ω to $T_p(T^*\mathbb{R}^n)$ at any p is a symplectic form
- Subspaces of $T_p(T^*\mathbb{R}^n)$ on which ω vanishes are at most of dimension n
- X_H is tangent to L

Hamilton-Jacobi theorem

A function $H : \mathbb{R}^{2n} \rightarrow \mathbb{R}$ is locally constant on a lagrangian submanifold $L \subset \mathbb{R}^{2n}$ if and only if the hamiltonian vector field X_H is tangent to L .

Corollary

L locally closed $\implies L$ is invariant under the flow of X_H

The End
Thank you for your attention!

Appendix

3. Geometry of transport equation
4. Application example in quantum mechanics

- 3. Geometry of transport equation
- 4. Application example in quantum mechanics

Geometry of transport equation

We have seen the geometric formulation of the first-order WKB approximation $\varphi = e^{iS/\hbar}$ in form of the Geometric HJ equation and the HJ theorem.

We can extend this to the semi-classical approximation $\varphi = e^{iS/\hbar}a(x)$. Recall:

Homogeneous transport equation

$$a\Delta S + 2\nabla S \cdot \nabla a = 0$$

Multiplying by a yields

$$\nabla(a^2 \nabla S) = 0$$

as a condition of that vector field \rightarrow lift to $L = \text{im}(dS)$.

Geometry of transport equation

For $H(q, p) = \sum p^i/2 + V(q)$, we have the restriction

$$X_H|_L = \sum_j \left(\frac{\partial S}{\partial x_j} \frac{\partial}{\partial q_j} - \frac{\partial V}{\partial q_j} \frac{\partial}{\partial p_j} \right).$$

The projection $X_H|_L$ onto \mathbb{R}^n (with coordinates x), denoted $X_H^{(x)}$ yields ∇S , hence the homogeneous transport equation

$$a\Delta S + 2 \sum_j \frac{\partial a}{\partial x_j} \frac{\partial S}{\partial x_j} = 0$$

tells us that $\nabla(a^2 X_H^{(x)}) = 0$

Geometry of transport equation

We can reformulate $a^2 X_H^{(x)}$ being divergence-free as

$$\mathcal{L}(X_H^{(x)}(a^2|dx|)) = 0,$$

with $|dx| = |dx_1 \wedge \cdots \wedge dx_n|$ the canonical density on \mathbb{R}^n .

Equation equivalent to the fact that the pull-back of $a^2|dx|$ to L via π is invariant under flow of X_H (since X_H tangent to L , Lie derivative invariant under diffeomorphism).

Geometric interpretation...

... of a as a half-density on L invariant by X_H .

Hence, a geometric semi-classical state is a lagrangian submanifold L of \mathbb{R}^{2n} equipped with a half-density a .

Geometry of transport equation

Example

For **1D oscillator**, stationary classical states are $L = H^{-1}(E) \subset \mathbb{R}^{2n}$. Up to constant, there is a unique invariant volume element for the hamiltonian flow of H on every level curve of H . Hence an L with the square root of the volume element constitutes a semi-classical stationary state for the harmonic oscillator.

- 3. Geometry of transport equation
- 4. Application example in quantum mechanics

Application example in quantum mechanics

Recall:

Definition

We call $\varphi = e^{iS/\hbar}a$ with $S(x)$ admissible and $a(x)$ satisfying the homogeneous transport equation the **semi-classical approximation**.

Example

For $n = 1$, we can solve directly for the phase

$$S'(x) = \pm \sqrt{2m(E - V(x))} = p,$$

and the amplitude

$$a = \frac{c}{\sqrt{S'}} = \frac{c}{(2m(E - V))^{1/4}}.$$

Application example in quantum mechanics

The first-order WKB approximation only works for p sufficiently large, and breaks down at turning points. Here, we need the semi-classical approximation.

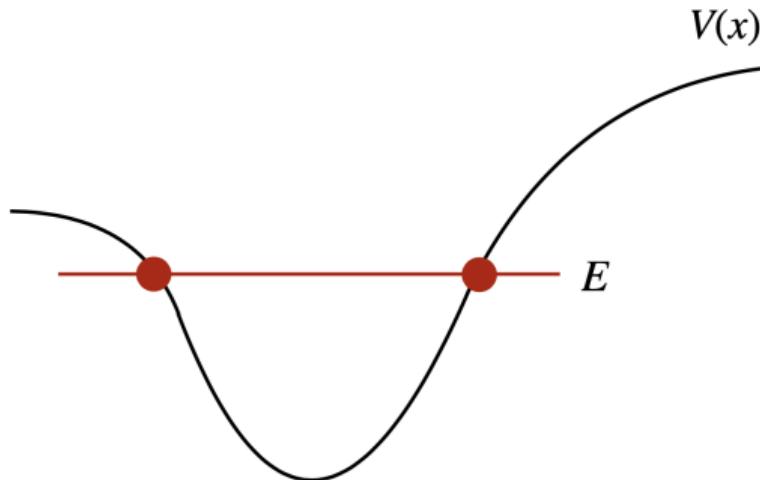


Figure: Source: Massimiliano Grazzini, Quantum Mechanics I

Application example in quantum mechanics

We approximate the general semi-classical state

$$\psi(x) \sim \frac{1}{\sqrt{p}} e^{\pm \frac{i}{\hbar} \int p dx}$$

by approximating the potential close to the turning point

$$E - V(x) \sim -V'(x_0)(x - x_0).$$

Via analytic continuation, this leads us to:

Quantisation condition

$$\frac{1}{2\pi\hbar} \oint p dx = n + \frac{1}{2}$$

Application example in quantum mechanics

Example

The quantisation condition can be used to derive the (discrete!) spectrum of the harmonic oscillator, $V(x) = \frac{1}{2}m\omega^2x^2$. Solving

$$\frac{1}{2\pi\hbar} \oint \sqrt{2m(E - V(x))} dx = \frac{\sqrt{2m}}{\pi\hbar} \int_{-x_0}^{x_0} \sqrt{\left(E - \frac{1}{2}m\omega^2x^2\right)} dx \stackrel{!}{=} n + \frac{1}{2}$$

(with $x_0 + \sqrt{\frac{2E}{m\omega^2}}$) for the energy yields

$$E_n = \hbar\omega\left(n + \frac{1}{2}\right).$$