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Goal: Obtaining approximate solutions of the Schrédinger equation, WKB method.
Developed by Gregor Wentzel, Hendrik Anthony Kramers, and Léon Brillouin in 1926.

Earlier appearances of essentially equivalent methods are from: Francesco Carlini in 1817,
Joseph Liouville and George Green in 1837, Lord Rayleigh in 1912, Richard Gans in 1915,
and Harold Jeffreys in 1923.
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Physical WKB Approximation

Recall the Schrodinger Equation (SE)

L0 4
h— = Hy.
Tge = MY
with the Schrodinger operator
N h? _,
A= "om Y M

which has solutions 1 = 1(x, t) : R” x R — C. We look for stationary states, i.e.
solutions to the SE of the form

Y(x, t) = p(x)e "t
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Free particle

Stationary states follow the time-independent SE
(H-E)p(x) =0 with E=/hw

Hence ¢ an eigenstate of the linear differential operator H with eigenvalue E, which
represents the energy of the system.
Simplest case: Free particle (V = const. and V' = 0). Ansatz:

p(x) = e = R[¢]* =2m(E - V)

for some £ € R".
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Free particle

Free particle for n = 1:

o(x) = ™ — n*¢2=2m(E - V)

® Case 1: E > V. Then
2m(E — V)
h
solutions are oscillatory and bounded, but not square-integrable.

® Case2: V> E. Then § ~+/E — V imaginary, hence ©(x) unbounded.

=4t eR
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Phase function ansatz

For more interesting examples, we must assume V'’ # 0.

Basic idea of WKB

If V varies (slowly) with x, so should ¢ vary with x — de Broglie wavelength A < V//V’

Replace £ € R” with the real-valued phase function S(x), ansatz ¢(x) = e*(*)/",
Plugging the ansatz into the time-independent SE, we get
- VS(x)|1? ih

(i~ ) = | T30 1 (v~ ) = 58500 L 002)

Note that ¢(x) = O(RO).
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Phase function ansatz

This implies

Hamilton-Jacobi equation

aS oS IVS(x)|]? !
H e Xpy ey =——" +VKX)=E
(X].) 7X 8X]_ 8Xn> 2m + (X) )
Definition
We call a phase function S : R” — R admissible if it satisfies the Hamilton-Jacobi
equation. )

We then also write
(H—E)p=0(h),
because the error is of order £, i.e. © an eigenstate of A with eigenvalue E modulo order
h.
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Semi-classical approximation

How to improve accuracy in terms of A7 Cannot choose better S, as physically

lo(x)]? = |e()/7| = 1 (probability density) is too restrictive — multiply ansatz by an

amplitude function, .
p(x) = e5)Ma(x)
Let S be admissible. Plugging ansatz in:

0
(A = E)p(x) = —i [ihaAS +2iR(VS) - (Va) + h*Aa—a (|| VS ~6)) } oiS/h

_ _i i . 2 is/h 1 2
= - [/h(aAs +2(VS Va)) +h Aa} S/ L o2y,

hence a(x) needs to satisfy the

Homogeneous transport equation
aAS +2VS-Va=0.
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Semi-classical approximation

We call ¢ = e’/"a with S(x) admissible and a(x) satisfying the homogeneous transport
equation the semi-classical approximation.

For n =1, we can solve directly the Hamilton-Jacobi equation

S'(x) = £4/2m(E - V(x)) ,

as well as the homogeneous transport equation

aS" +24S' 20 = (a2S') =0

C
— g = =

VS (2m(E - V)t
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Generalisation

Extend the preceding procedure to arbitrary degree of precision:
p(x) = 50V (a5(x) + hay(x))
Let e°/"ay be a semi-classical approximation. Then

(H— E)p(x) = —% [ih2 (alAS +2(VS-Vay) — iAao> + h3Aal] eiS/h L or3),

hence a; needs to satisfy the

Inhomogeneous transport equation

a1AS +2VS -Va; = iAag.
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Generalisation

In general, a solution to the eigenstate problem modulo terms of order O(A") is given by
a WKB ansatz of the form .
o= eiS/hZ ahk
k=0

— asymptotic series, where S is admissible (satisfies the Hamilton-Jacobi equation), ag
satisfies the homogeneous transport equation, and aj satisfies the inhomogeneous

transport equation
axAS +2VS -Vay =iAa_1.

forall k=1,...,n

With this method from QM, we now turn to geometric considerations from CM.
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2. Geometry of the WKB method

2.1 Geometry of admissible phase functions
2.2 Symplectic formulation of Hamilton-Jacobi
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Geometry of the WKB method

base manifold
M

/ cotangent bundle
legendre T*M

tangent bundle
™

Figure: Source: Peter Mann - Lagrangian and Hamiltonian dynamics
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Geometry of admissible phase functions

Geometrical consideration of the phase function S for n = 1:

¢ Classical phase space/plane T*R = R with coordinates (g, p)
® View dS = S'dx : R — T*R as 1-form, p = S’ = |/2m(E — V(x))
® Generally: S admissible <= L =im(dS) C H~1(E)

Fundamental link between CM and QM

When the image of dS lies in a level manifold of the classical hamiltonian, S may be
viewed as the phase function of a first-order approximate solution of the SE.
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Geometry of admissible phase functions

The image L = im(dS) fulfils the following:
1. L is an n-dimensional submanifold of H1(E)
2. The pullback of Poincaré-Cartan form @ = p;dg’ on T*R" to L is exact

3. The restriction of the canonical projection 7* : T*R” — R" to L induces a
diffeomorphism L = R"

L is a lagrangian submanifold of H=*(E).

This is too restrictive! General L are not projectable, and 6 is only closed.

17/21



Geometry of admissible phase functions

For 1D oscillator, level sets of hamiltonian are lagrangian submanifolds in the phase
plane, specifically ellipses. Pull-back of pdq is closed but not exact. Recall that S % R.

Oscillator still described by trajectory — classically, state of system represented by L
(projectable or not) rather than by the phase function S.

System Time Series
|
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| | | |
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| | | ol
1, ! | Time
" h I |
| | | |
| | |
| | | |
|
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Phase Portrait

Velocity

Figure: Source: Wikipedia

Starting point of geometrical approach to microlocal analysis.
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Symplectic formulation of Hamilton-Jacobi

Recall: for hamiltonian function H : T*R"” = R2" — R, hamiltonian vector field is

ol 4y MO OHO
H_qaq pﬁp_apﬁq dq dp

Let w be the canonical symplectic form on the phase space. Then:

Geometric Hamilton-Jacobi equation

tx,(w) = dH

— Blackboard

Coordinate-free representation of Hamilton's equation, which we retrieve locally.
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Symplectic formulation of Hamilton-Jacobi

® | CHYE) = TLCker(dH) <= w = dq' A dp; vanishes on subspace of
To(T*R") gen. by T,L and Xy(p) forall pe L

® Restriction of w to T,(T*R") at any p is a symplectic form

® Subspaces of T,(T*R") on which w vanishes are at most of dimension n

® Xy is tangent to L

Hamilton-Jacobi theorem

A function H : R?" — R is locally constant on a lagrangian submanifold L ¢ R?" if and
only if the hamiltonian vector field Xy is tangent to L.

L locally closed = L is invariant under the flow of Xy
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The End

Thank you for your attention!
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3. Geometry of transport equation

4. Application example in quantum mechanics
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Geometry of transport equation

We have seen the geometric formulation of the first-order WKB approximation ¢ = e™>/%
in form of the Geometric HJ equation and the HJ theorem.

We can extend this to the semi-classical approximation ¢ = e’5/"a(x). Recall:

Homogeneous transport equation

aAS5+2VS-Va=0

Multiplying by a yields
V(a’VS) =0

as a condition of that vector field — lift to L = im(dS).
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Geometry of transport equation

For H(q,p) = >_p'/2 4+ V(q), we have the restriction
s 9 9V 0
XulL = 9r 9
Hle ZJ:<8XJ g dqj an)

The projection Xy|, onto R” (with coordinates x), denoted X,(f) yields VS, hence the
homogeneous transport equation

da 0S
aAS+228XJ 8xj

tells us that V(azX,(f)) =0
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Geometry of transport equation

We can reformulation azX,S,X) being divergence-free as
LX) (@) = 0,

with |dx| = |dx; A --- A dx,| the canonical density on R".

Equation equivalent to the fact that the pull-back of a?|dx| to L via  is invariant under
flow of Xy (since Xy tangent to L, Lie derivative invariant under diffeomorphism).

Geometric interpretation. . .

. of a as a half-density on L invariant by Xp.

Hence, a geometric semi-classical state is a lagrangian submanifold L of R?" equipped
with a half-density a.
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Geometry of transport equation

For 1D oscillator, stationary classical states are L = H_l(E ) C R2", Up to constant,
there is a unique invariant volume element for the hamiltonian flow of H on every level
curve of H. Hence an L with the square root of the volume element constitutes a
semi-classical stationary state for the harmonic oscillator.
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4. Application example in quantum mechanics
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Application example in quantum mechanics

Recall:

We call ¢ = e’*/"a with S(x) admissible and a(x) satisfying the homogeneous transport
equation the semi-classical approximation.

For n =1, we can solve directly for the phase

S'(x) = £y/2m(E - V(x)) = p,

and the amplitude
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Application example in quantum mechanics

The first-order WKB approximation only works for p sufficiently large, and breaks down
at turning points. Here, we need the semi-classical approximation.

V(x)

Figure: Source: Massimiliano Grazzini, Quantum Mechanics |
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Application example in quantum mechanics

We approximate the general semi-classical state

000 ~ et T

by approximating the potential close to the turning point
E—V(x)~—V'(x)(x —xo) -

Via analytic continuation, this leads us to:

Quantisation condition
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Application example in quantum mechanics

The quantisation condition can be used to derive the (discrete!) spectrum of the

harmonic oscillator, V(x) = 3mw?x?. Solving

\/2 1
\/2mE V(x m/ mwzx2 dxén—l—f
27Th 2

(with xo + rﬁ—fz ) for the energy yields

.
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