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Abstract

We closely examine the transition amplitude of elastic scattering of leptons off various
heavy hadron targets in the one-photon-exchange approximation. While the term of the
hadron can be handled at leading order, the much more dominant contribution of the
lepton is currently being studied at next-to-next-to-leading order. The calculation of the
amplitude squared, consisting of the leptonic and hadronic part, is therefore increasingly
complicated.

This thesis aims to separate the two contributions for much simpler computations when
selecting a new hadron as the target. The central mathematical variations are arising from
the differing spins of the hadron targets, which we are discussing up to and including spin
2.
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1 Introduction

A century ago, quantum mechanics shook the foundation of physics and our understanding
of reality. It emerged from the first quantisation, which converted classical particle equations
into quantum wave equations. The second quantisation gave rise to quantum field theory,
which converted classical field equations into quantum field equations.

The scientific developments in the early 20th century culminated in the formulation of the
Standard Model of particle physics (SM) in the 1970s. The SM has proven time and again
to be an exceptionally accurate theory. Quantum electrodynamics (QED) is an important
subfield of study, and efforts both theoretical and experimental persist to this day.

1.1 Experimental preface

To highlight practical endeavours in the precision frontier, consider the measurements per-
formed at the Mainz Microtron (MAMI) in 2013 [1]. They are focused on resolving the proton
radius puzzle, which describes the discrepancy between the measurements of the proton ra-
dius through established methods and more recent procedures involving exotic atoms such as
muonic hydrogen [2]. The novelty in their traditional approach of electron-proton scattering
lies in the minimal energy transfer, which allows for precise measurements.

While the proton radius puzzle describes important fundamental research, the proposed
targets are not limited to protons. A second, very recent development is the emerging ULQ2
(Ultra-Low Q2) spectrometer experiment [3] at the Tohoku University. This facility, too, is
concerned with low-energy electron scattering, and intends to measure the charge radius of
the deuterium and carbon nucleus, amongst other things.

1.2 Motivation and M cMULE

McMULE (Monte Carlo for MUons and other LEptons) is an open-source framework to
perform QED calculations of scattering and decay processes involving leptons. In particular,
it employs Monte Carlo integration to calculate differential cross sections up to next-to-next-
to-leading order (NNLO) [1]. The emphasis is thus set on precision physics. Here, we focus
on elastic scattering processes of the form

X (pi) + (ki) = X(pg) +U(ky), (1)

where [ designates the lepton and X the arbitrary hadronic target, which an atomic nucleus
in most cases.

As part of preparing a computation, we have to "feed" the Mule information regarding the
particles. The required input includes the squared transition amplitude associated with the
scattering process. A key factor there is to obtain special functions called form factors from
the literature. They correspond to the electromagnetic charge distribution of the particles.
The output, in that case, is the differential cross section, which is a measure of the probability
of a scattering process.



An important consideration is the bremsstrahlung, where a charged particle experiences
deceleration upon deflection by another charged particle. This converts some of the kinetic
energy of the decelerated charged particle into electromagnetic radiation. Due to their small
relative mass compared to hadrons, leptons experience a much stronger deceleration than
hadrons and their contributions to radiation are therefore overwhelmingly dominant compared
to hadrons.

For this reason, the mathematical expression of leptons must incorporate NNLO corrections.
For hadrons, leading order (LO) suffices in most cases. This is indicated visually in the
Feynman diagram in Figure 1.

I(Kq) I(ky)

Higher order
QED corrections

Figure 1: Feynman diagram of the elastic scattering of leptons off hadron targets in the one-
photon-exchange approximation, X (p;) + I(k;) = X (py) + (k).

The diagram illustrates how the hadrons, despite their complex inner making, are well
understood at low energy scales in LO. The leptons on the other hand, which are simple,
fundamental particles, yield very complicated terms at NNLO. To get a sense of the complexity
of the expressions of leptons at higher order, check out [5]. The cloud shape indicates that
these expressions are not of our interest in this thesis.

Currently, one has to cumbersomely repeat the calculation of the amplitude, which is fed
into MCMULE, for every new hadronic target. The complication arises due to the intricate
terms at NNLO associated with the lepton.

This thesis aims to consider a new approach in calculation. In particular, we discuss the
mathematical challenges and consequences of the new strategy and provide baseline calcula-
tions in both analytical and numerical territory.



2 General procedure

2.1 Analytical ansatz

Consider the one-photon-exchange approximation of the scattering of a lepton off a target
hadron. Ignoring prefactors, the amplitude can be written as

M = jhJ,. (2)

From there, we isolate the electromagnetic four-current J#, which describes the transition
between the initial and the final state of the target, while j* is associated with the lepton.
The four-current is generally defined as

Tt = ([Tl 3)

where I' denotes the vertex and v a suitable wave function, ¢ indicating the initial and f the
final state. J* is the relativistic equivalent of the charge density, which describes the amount
of charge per time passing through a unit cross section.

The structure of I and % varies from particle to particle, but we know that J* is a vector
in the Lorentz space. It obeys the continuity equation

9 J" =0, (4)

which simply states that the charge is locally conserved. By shifting the continuity equation
from the position space into the momentum space, we obtain the requirement

g (W Tl = 0, (5)

where ¢ = py — p; denotes the four-momentum transfer. This is a useful mechanism to derive
the makeup of I'.

The mathematical structure of the wave functions, both in the Lorentz space and the spinor
space, is highly dependent on the spin. The structure of the vertex must change accordingly
to harmonise with ), which from now on only represents the spin-dependent part of the wave
function.

In general, the spin function of a particle with intrinsic spin j yields |j| Lorentz indices.
Therefore, I' must possess 2|j| + 1 Lorentz indices which contract to a single index when the
two spin functions are applied,

JE = (B DI IOPLI () (6)
Once the current has been obtained, we form the hadronic tensor
H,, = J,J). (7)

The leptonic tensor L*” is defined similarly. Take note: this tensor is still implicitly spin-
dependent. However, most experiments do not differ between different spin states.



To mitigate this dependency, we sum over all helicity state combinations of the incoming
and outgoing hadron, averaging over the 25 + 1 possible initial states,

fsg)_23+1(z Z ) (8)

spin out spin in

We call this tensor unpolarised and mark it with a (0). Since the spinors reappear in
the explicit helicity sum, we must carefully differentiate between different scattering targets
regarding their spin j, which must be reflected in their representation.

In practice, the hadronic targets are mostly nuclei. Their rule of thumb is:
- Odd mass nuclei have fractional spins (j is a half-integer).

- Even mass nuclei composed of odd numbers of protons and neutrons have integral spins
(7 is an integer).

- Even mass nuclei composed of even numbers of protons and neutrons have zero spin
(4 =0).

As a further complication, all nuclei with non-zero spins have magnetic moments, and nuclei
with 7 > 1 also have an electric quadrupole moment. However, all nuclei possess an electric
monopole. Arbitrarily high spins result in arbitrary electromagnetic multipoles, which will be
reflected in the form factors present in the current and tensor associated with the hadron. In
1966, Theis stated a method [6] to construct 2j + 1 form factors for spin j.

The next step is to form the unpolarised, squared amplitude which is a measure of the
transition probability. Notice that there are generally two ways to compute this,

(M) = )L(O)W— 2j+ <zr; HM”)(Z Luu)

_ 1 o
_WZ(J Tu) (37 ) —MZMMT

spins spins

Figure 2 provides a visual intuition of the two different approaches. Currently, amplitudes
are calculated by analytically computing the hadronic and leptonic tensors, which leads to
an omission of the explicit representation of the spin functions. This is generally an involved
process, as the leptonic expressions at NNLO are very convoluted.

In contrast, future applications of MCMULE will only require the electromagnetic currents
of the particles. The squared amplitude is then calculated via a numerical contraction of the
currents, which results in a significantly faster computation. This means that new hadronic
targets can get implemented at almost no additional expenditure.
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Figure 2: The two different ways of separating the squared amplitude.

2.2 Numerical check

Mathematica was employed for analytical derivations and comprehensive numerical cross-
checks. To manage Lorentz indices and compute traces, we used Package-X [7, 8].

The equalities stated here have been checked numerically with many different parameters.
In this thesis, we illustrate this using the arbitrary initial and final momentum

pi= (V52 +52+12+72,-51,-7) and

(10)
pr = (V52 +42 22 +62,4,-2,-6)

where both the incoming and outgoing hadron have a squared mass of m? = p? = pfc = 25. We
call particles that satisfy this equality to be on shell. The scalar product is to be understood
under the Minkowski metric with signature (4, —, —, —).

Furthermore, form factors are set to 1 in numerical testing for simplicity reasons. For
every spin configuration, we compare the traditional procedure which omits the spin functions
against the explicit formulation of the spin sum. In the latter case, we must decide on a basis
and representation of the spin functions, which will be discussed case by case. The notebooks
are available on Github under

https://github.com/MarvinSigg/hadronictensor.


https://github.com/MarvinSigg/hadronictensor

3 Spin 0

As an introductory case, consider spin 0. The prototypical example of a hadron with spin
0 is the carbon '2C nucleus. Its behaviour and form factor are well understood, and it is
therefore to this day a prime candidate to probe new precision barriers. [9]

3.1 Derivation of the current

We will now illustrate the procedure discussed in Chapter 2.1. In the trivial case of spin 0,
the notion of a spin function is nonsensical. We may therefore express the "spinors" as a 1,
which is why we label spin 0 as the scalar case. This leaves not a lot for our vertex to work
with.

The only allowed non-trivial Lorentz objects are the initial and final momentum of the
carbon nucleus. For J* to transform as a Lorentz-vector, only linear combinations of those
objects are admitted. Our most general vertex is thus of the form

I = Apf + By, (11)
where A and B are unknown scalar quantities.
By Equation (5) we require
!
4u(Ap} + Bpf) = (A= B)(pi - py —m?) = 0, (12)

and obtain the equality A = B = F. The remaining coefficient is scalar, and the only non-
trivial scalar appearing is @2, which is minus the square of the momentum transfer,

Q*=—¢* =—(ps—p)*. (13)

Therefore, we have a single unknown function F' depending on @2, which is our form factor.
Our current takes the form

Ju = PuF(Q%), (14)
where we abbreviated the momentum sum as
Pp:(pi"’pf)u- (15)
Since there is only one spin configuration in the scalar case, summing over the helicity is
superfluous. The hadronic tensor takes the form
H{) = PP F (@) (16)
Numerically, we evaluate the tensor as

361 56 80 8

go _| 56 1 -35 33
o 80 -35 1 45
8 33 45 169



3.2 2C+e —12C + e +v with MCMULE

To highlight a practical example of our discussion, let us shift our attention towards the
closely related process

RO tem = 2CH+e +7, (18)
where the v describes the emission of a photon. This process was measured at the MAMI by
the Al-Collaboration, described in |1, 9] and recently simulated by MCMULE. The numerical
contraction of the tensors required significant changes in OPENLoOOPS [10, 1], which were

implemented by Zoller. We show several results of this simulation to link the theoretical
examinations with practical considerations.

To accurately simulate the measurements performed, we need to mirror the parameters of
the experiment as the input into MCMULE. The electron beam energy in the lab frame totals
Fheam = 195 MeV, which translates to a momentum transfer of Q% = 1.29 x 10® MeV?2, while
the carbon is at rest. Because of the experimental setup, the detection of outgoing electrons is
confined to a scattering angle of 6, € [13°,17°]. While the scattering angle of the carbon in the
experiment was limited as well, the simulation was able to calculate over the whole range of
the scattering angle. The scattering angle is generally measured from the axis of the incoming
electron beam. Another constraint in parameters is a minimum difference in energy of the
outgoing electron of Easte — F_ ~ 61 MeV compared to elastic scattering without photon
emission (12C + e~ — 12C + e7). This can be viewed as a measure of the inelasticity of the
process. Naturally, the lost energy contributes to the emitted photon.

This 2 — 3 process is currently calculated by MCMULE at next-to-leading order (NLO). At
leading order, the total cross section was calculated to be o9 = 12.7723(6) pb. Including NLO
corrections, the value increases to o1 = 12.9064(6) ub, which is a difference of K = 1.050(6)%.
The corrections can be observed in Figures 3, 4 and 5 as the dotted contribution in the upper
half. The K-value in the lower half of the figures describes the relative difference between LO
and NLO calculations.

The three plots illustrate different dependencies of the differential cross section. This in
turn can be used to deduce the most likely physical configurations of the particles after the
scattering. For instance, the dependency within the range of the scattering angle of the
electron in Figure 3 indicates a trend towards smaller angles. In contrast, Figure 4 shows a
strong preference for the scattering angle of the carbon to be roughly perpendicular to the
incoming beam.

The plot in Figure 5 reveals the tendency of the electron to lose as much energy to the
momentum of the carbon and the radiation as possible. In this plot, a hard cut-off can be
observed at around 135 MeV, which is a consequence of the constraining parameters given
above.

We will return to the land of the firmly mathematical in the following chapter, but this
detour shows the practical goal of theoretical considerations, such as those presented in this
thesis. Thanks to the new approach, the spin 0 carbon can be exchanged with any other
hadronic target to repeat the calculation with significantly less extra effort than before.
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Figure 3: Simulation of the differential cross section depending on the scattering angle 6, €
[13°,17°] of the outgoing electron.

12C+e = 2C+e +v @Al

1.0 — doo
0.8 1
0.6

0.4 1

do;/dbc / ub

0 25 50 75 100 125 150 175
Oc / deg

Figure 4: Simulation of the differential cross section depending on the scattering angle 6o of

the outgoing carbon.



12C+e” — 2C+e +y QA1

o o o
= [=2] o]

doy/dE, / ub

o
o
L

e
o
|

0.010 1

0.005 1

KM -1

0.000 A

T T T T T
75 100 125 150 175 200
E. /MeV

Figure 5: Simulation of the differential cross section depending on the energy of the outgoing

electron.



4 Spin 1/2

Many famous particles have intrinsic spin 1/2, including the building blocks of atomic mat-
ter. The mathematics behind them is therefore well understood. We inspect the electron and
the proton in two separate cases, as their respective charge distributions differ quite drastically
from each other.

4.1 The Dirac spinor

To encapsulate the behaviour of spin 1/2-particles accurately, we need suitable mathematical
elements which satisfy the Dirac equation

(p—mu=0, (19)

where the slash notation denotes the scalar product of the momentum p with the y-matrices.
The ~v-matrices grant us a covariant formulation of the Dirac equation with respect to the
Lorentz group. They are a set of four spinor matrices {7°,7!,72, 73} which must satisfy the
Dirac algebra

{7} = 29" (20)

While the y-matrices are characterised by their anti-commutativity relations, their commu-
tativity appears often enough to receive a special notation,

12 /L 12
ot = 5[7“77 ]. (21)

The common ~°-matrix is of no use to us. Its implementation is not allowed in our case
study, since we require conservation of parity (which 7% violates).

The objects solving the Dirac equation are the Dirac spinors u. It should be stressed that,
while they are vectors in the spinor space, they are most definitely not in the Lorentz space.
The Dirac spinors fulfil the completeness relation

Z u/\z_L)‘:p+m, (22)

A=+1/2
where the "bar" denotes the Dirac adjoint,
a=u'"". (23)
In subsequent chapters, we will use the equality
Updu; = 0, (24)

which follows directly from the Dirac equation (19). Keep in mind that every statement here
is made without being restrained to any particular base or representation.

10



4.2 Leptons

At this point, we might wonder what the amplitude of elastic lepton-lepton scattering looks
like. So, for once we will consider a lepton (e.g. an electron or muon) as the target as well,

ltarget (pz) + lbeam(ki) — ltarget (pf) + lbeam(kf) . (25)

A particularly elegant way to formulate the amplitude is with Feynman rules. To illustrate
this, we will deviate from the procedure in Chapter 2.1. For our purposes, we only need the
rules listed in Table 1.

For every ... draw ...  write ...
Incoming lepton — u(p)
Outgoing lepton — u(p)
Internal photon line  ~~r~n~n~n _7:]92/#7

Vertex +§_k —iey!

Table 1: Selection of Feynman rules relevant to leading order QED processes of elastic lepton
scattering.

Applying the Feynman rules onto the Feynman diagram of process (25) and reflecting onto
its hermitian yields Figure 6.

j.u

Figure 6: The Feynman diagram of the I(p;) +{(k;) — l(ps)+1(ks) scattering process including
its hermitian reflection.

11



The amplitude is then formed by placing the terms in the Feynman rules in the appropriate
order,

M = (=i)a(ps)(—ier" Ju(p:) [%}a(kﬂ(—iew)u(m)

(py — pi
62
= = 2 )y ulpa))[ulhs) (ki) (26)
62
= _?Jﬂju ,

where we isolate the electromagnetic current of the target lepton,

Jy = a(ps)yuu(pi) - (27)

Notice that in the spirit of the argument we are handling the beam lepton in LO as well. We
must not forget that in practice, NNLO corrections have to be applied to the beam. However,
this simplification does not affect the important calculations performed here.

Taking the absolute square of the amplitude, we may regroup terms with high and low
indices together,

IMP = MM = ;(Jﬂjﬂ) (23"’

I

(Jud$) (55 (28)

('b'h 'Qg;‘ @

- ?H/“,L'u‘l/ .

This gives us the "hadronic" tensor of the target lepton
H/uz = [ﬂfVMUi][ﬂiVVuf] ) (29)

where we from now on omit the notion of the momentum p, e.g. by writing u(p;) = u;. We
can compute the unpolarised hadronic tensor by using the completeness relation (22) in steps
3 and 4. Afterwards, we restore the implicit spinor indices to introduce the trace.

1
HY) =5 >, D Hw

spin out spin in

= % > lapyuitinug]

Ar A
(30)

= STy, + mu (g, +m)

= 2[(pi)u(Pf)V + Pi)v(Pf)u + (m2 — Di ‘pf)guV] .

12



The trace can be computed either by utilising properties of the Gamma matrices, or with
Package-X. Details can be found in numerous texts, whereupon [12] provides a particularly
detailed calculation.

The other possibility is to maintain the spinors and explicitly sum over all possible helicity
states. In that case, we directly get

Ly _
) = 5l vt N ) + (a7 y; N 7]

(31)
o Vg ot )+ [y e i )

where the +-sign reflects the +1/2-spin state of the spinors.

4.2.1 Numerical comparison

To reiterate, everything previously mentioned works in any representation, as long as the
~-matrices satisfy the Dirac algebra (20). For the numerical part, we choose the Dirac repre-
sentation of the y-matrices which depends on the Pauli matrices. This can be found in any
standard text, such as [13].

For the Dirac spinors, we use the classic representation

E+m 0
1 0 1 E+m
uh = and U = ——— . (32)
E+m Dz E+m Pz — Z.py
Py + Z.py —Pz

We utilised the test momenta (10) in the numerical illustration. To calculate the unpolarised
hadronic tensor, both the computed trace (30) and the helicity sum (31) yield the same result,

270  —10 —22 —246
-10 10 28 4

HY) = : (33)
—22 28 82 16

—246 4 16 258

This is a numerical demonstration of the equality

LYY mel )

Af +1/2 \i=+1/2 (34)
= Q(Pz‘)u(pf)v + Q(Pi)v(pf)u + Q2glw .

13



4.3 Hadrons

If we replace the point-like lepton with a more complex spin 1/2 particle, say, a proton, we
must drop the pretence of the point charge distribution. To accurately describe its electro-
magnetic charge distribution and thus its behaviour in the scattering process, we must leave
the Feynman rules at the door and return to the general approach described in Chapter 2.1.

Compared to the scalar case, we have four-dimensional vectors as spinors, so we better have
4 x 4 matrices in the vertex. The exhaustive list of objects that can appear limit to p!, p? ,
and y*, which can be obtained by expanding I'* in the 16 covariant matrices [14]. Similarly
to (11) we consider the general linear combination, which we may rewrite as

It = Ay" + B(py + pi)" + Clps — pi)" . (35)
Here, p!' and p’;, which are scalars in the spinor space for a fixed Lorentz index, are understood
to be multiplied by the 4-dimensional unit matrix. By (5),
!
Qu (ﬁfI‘“ui) = Atuggu; + B(p?c — pf)ﬁfui + CqQEfui =0, (36)

we notice that the first term vanishes by (24). The second term disappears after contraction
with ¢, since pfc = p% = m?. The third term does not automatically vanish, so we set C' = 0.
Via the Gordon identity (cf. [15]) and reparametrisations F; = A + 2mB and Fh = —2mB,
we arrive at the vertex

iotad

I =" F(Q%) + F3(Q%), (37)

2m

with the notation o#{4} = "¢, Fy and F, are the electric monopole and magnetic dipole
form factors, respectively. The current J# is then formed by sandwiching I'* between %y and
u; according to (6).

We are now ready to proceed exactly as in the previous chapter, starting at (29), where we
just substitute v, with I';,. The trace is evaluated using Package-X,

HY) = (o'vf + ) (1 = 1) Fa(Q)
+ (P70 + o) (2F1(622)2 —(1+ T)FQ(Q2)2> (38)
+ 9" Q* (FU(Q%) - Q%))
where we designate a commonly emerging factor,

Q2

Equation (38) is the contracted expression of the unpolarised hadronic tensor for spin 1/2.
Notice that for F; — 1 and F» — 0, we recover the leptonic case (30).

14



4.3.1 Numerical comparison

We aim to numerically review the equality

1 _A ; A
ng(;):iTr(ru(pﬁm)ry(pf Z > (e T [a Ty ] . (40)

,\f +1/2 \j=+1/2

where we choose the same representation as in chapter 4.2.1. Indeed, the numerical tensor
produces

361 —19 —19 247

in both computations.

15



5 Spin 1l

At the centre of our endeavours lies the treatment of spin 1-particles. Their prototypical
example is the deuteron, which is the nucleus of a heavy hydrogen atom, 2H = d. The photon
as a spin 1-boson is not a fitting example as they do not self-interact. Therefore, we must
make use of the massive polarisation vectors &,,.

5.1 Polarisation vector

The fundamental difference between the spin 1-polarisation vectors and the Dirac spinors
is that they transform like vectors under the Lorentz group. Analogous to (22), they have a
completeness relation of their own,

Pubv
> G = g+ B (12
A=-1,0,1

Spin 1-polarisation vectors are four-vectors in the Lorentz space and therefore have one
degree of freedom more than would be expected of the three states -1, 0, and 1. Luckily, their
orthogonality to their momentum,

P =0, (43)

provides a constraint to remove one degree of freedom. This property is also called trans-
verse. Another fundamental characteristic of the polarisation vectors is their spin-dependent
orthogonality to each other,

ME) = —b (44)

These attributes generally hold regardless of their representation.

5.2 Derivation of the current

Since the spin functions are Lorentz vectors, the vertex must possess 3 Lorentz indices,
JH = fj}yl““”"’{ip. (45)

It is further required for the vertex to be a linear combination of tensors of rank 3, comprising
the metric tensor and the momentum vectors. Our ansatz takes the form

DM = A1g"plh + Asg’p} + Brg"’pif + B2g""ply + Crpi'pi v}y + Caplppip},  (46)
as any other possible terms immediately vanish by (43). After contraction,

0 (6,776, = 5 [(Br - B)QG €

(47)
+(2(42 - A1) + (C1 - ©)Q) (€ pi) oy - &)] 20,

16



we observe that As = Ay, By = By, and Cy = C1, which produces the current

T = Ay (py - &EF + & - pigl!) + Bu(Ef - &) P+ Ci(&f - pi) (& - o) PH (48)

It should be noted that the decision to pair up A; with Ay and Cy with Cs is arbitrary.
Because of the Q?-dependence of the coefficients, other pairings (such as C2Q? = 245 and
C1Q* = 2A;) would work as well. We will continue the naive approach of the most obvious
pairings, because other pairings are equivalent by reparametrisation.

Similar to Section 3.1, the remaining coefficients are functions of @2, which we recognise
as form factors. After a reparametrisation of the coefficients, the electromagnetic current for
spin 1 takes the form

2 2
JH — pH [—Fl(QQ)& 5+ ngg (& 9)(&F-q) + %&' : fjf)]

+ F(Q%) (€1 - q— &' q)

which is often found in modern literature, such as [16]. This form satisfies the requirements
that are Lorentz invariance, current conservation, and parity.

(49)

5.3 Computation of the closed form
To derive a closed form of the helicity sum (i.e. without spin functions), consider now
1
0) _ *
HY = 3 S (50)
spin out spin in

The idea is to explicitly restore the Lorentz indices for all scalar products in (49), expand
the complete expression, and then use the completeness relation. In this way, we move the sum
into each index pair of spinors, which we replace with the right-hand side of (42). Contracting
all spare indices leaves us with

HY) = é [GTF2(Q2)2 +872(F1(Q%) + F2(Q?) + 2F3(Q%))°

+ (3F1(Q2) +27(FU(Q%) + Fa(Q?) — Fg(QQ)))z} P.P, (51)

The &’s have been eliminated, which leaves us with the hadronic tensor corresponding to
the case of unpolarised initial and final deuterons.

Additionally, one might want to tidy up (51) by implementing the standard form factors

Gu(Q%) = —F2(Q7),

Gal@) = Fu(Q) + F(Q) +2F5(Q7), and (52)
Co(@) = 27(B@) ~ F(@) + (14 37) R(@),
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where the G¢, G, and Gg represent the form factor for the charge monopole, magnetic
dipole, and charge quadrupole, respectively. Furthermore, we can introduce the structure

functions 5
Hi(Q%) = —gQQ(l +7)Gu(Q) and
(53)
2 8
Hy(Q?) = M*(Ge(Q*) + 57Cu (@) + 57°Go(Q%)%) -
Following [16], this leaves us with a compact formulation of the unpolarised hadronic spin
1-tensor,
ey PP,
HLY = H(Q) (g + g ) + (@) 7y (54)

5.4 Numerical comparison

We choose the adjoint representation of a spin 1-particle, particularly of its spin operator.
Its eigenvalues -1, 0, and 1 represent the three spin states. Their corresponding eigenvectors
are

1 0 -1
L] a=1o d e =—|_ (55)
1 = —= — 5 ey = 5 all €1 = —= — ,
1 \/§ 1 0 1 \/§ 1
0 1 0

which describe the polarisation vector in its rest frame. Boosting them yields the general form,

i _(P-é préx .
o = (2 B0 ). (56)

Analogously to (34) and (40), we aim to check the identity (50). In this case, the two
computations produce the tensor

388816 —20064 —21204 —271852
1 —20064 1956 3666 13458
HO —

or (57)
M225 0 919204 3666 8796 14598

—271852 13458 14598 194524
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6 Spin 3/2

Spin 3/2-particles are less discussed than particles of spin 0, 1/2, and 1, as they emerge less
frequently. Examples include members of the uds baryon decuplet and several nuclides, such
as 1°7Au, the only stable gold isotope [17].

6.1 Interlude: spin coupling and Clebsch-Gordan decomposition

The formulation of spin functions for higher spin can be achieved by coupling spinors of lower
spin together. If one desires a spin function of spin j, then one must couple spin functions of
spin j; and jo together, such that j; + jo = j. The Clebsch-Gordan decomposition provides
the necessary coefficients, which can be directly calculated or looked up at [15|. However, the
general formula for this procedure,

Ji+i2
hejpk= @ s, (58)

s=|j1—j2|

already creates complications. Apart from spin j, which is what we desire, the coupling also
produces terms of lower spin (namely j — 1,5 —2,...,|j1 — j2|). The problem at hand is that
this coupled state initially has more degrees of freedom (d.o.f.) than we would expect.

Generally, a spin function of spin j has 25 + 1 d.o.f., one per spin configuration. Since the
degrees of freedom are multiplied in the direct product and added up in the direct sum, we
see that our coupled state initially has 4j;jo d.o.f. too much. We thus need a way to reduce
excess degrees by finding constraints.

6.2 Polarisation vector

To distinguish from the Dirac spinors w and anti-spinors v, we denote w to be the spin
function. We formulate spin 3/2 in the combination

Lo,3

5 ~os. (59)

N | =

By the Clebsch Gordan-decomposition, spin 3/2-functions are of the form [19]
wff?’/Q = uifjl and

wil/? —

1 2 (60)
Fetl + 0
Z ﬁ“@+ﬁ“%
This leaves us with 2 -4 = 8 degrees of freedom, of which four must be eliminated. Luckily,
there are four constraints to work with,

plw, =0 and ~fw, =0. (61)
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In other words, spin 3/2-functions are transverse and can be covariantly eliminated. Each
equation accounts for two constraints, as they hold for both states of the Dirac spinor compo-
nent.

Furthermore, they satisfy the Dirac equation,
(p— mywr =0, (62)
and their completeness relation is of the form [20)]
AX 1 2 1
Y whw) =—(p+m) [g#,, = 3 W~ 55 Puby = 3~ (P = %pu)] : (63)
A=43/2,4£1/2

The adjoint spinor @ is formed similarly to (60) by combining the Dirac adjoint @ and the
complex conjugate polarisation vector £;. We denote the quantity in (63) as I, (p), since we
will need it later.

6.3 Derivation of the current

By employing all combinations of allowed objects (similar to Chapter 4.3), the ansatz for
the vertex is

PP = Aiy"g"? + Aoy pl vy
+ Bip}'g"" + Bapltg"’ + Bspi g"” + Bap'sg"” (64)
+ Cipli pi v + Coplpipfy.
Again, we understand terms without ¥* to be multiplied by the unit matrix. Due to the
constraints (61) of w, these are the only terms which do not immediately vanish. The covariant

elimination in particular is accountable for the lack of any terms containing v and +”. An
exemplary calculation goes as follows:

WPy w, = Wy (297 — AP )Y w, = —w, Y Py w, (65)
= —w, " (29" — P w, =, [Ary* g Jw, .

Any other combination can similarly be reduced to an already existing term in (64). For the
vertex to satisfy gauge invariance, we require

quwy, THPw;, L 0, (66)

from which we infer By = By, By = Bs, and Cy = C;. The A; and Ay terms vanish by (24).
Suspicion should arise due to the number of remaining coefficients, which is one more than
expected. We will return to this issue in Chapter 8.2. To that end, one can show (e.g. with
Package-X) that the vertex is equivalent to

[#° = (A1g"? + Aop{p; + 2Bimg"? + 2Cymp} py )" -
—i(B1g”" + C1p!p}) o™ + (pY " + p}g"” ) Bs .
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Following the same logic as in (30), we compute the unpolarised hadronic tensor,

1
0) _
HY) = 1 > T

spins

1 _ _
= 3 2 [0, 0w ] (@il Py ] (68)

spins
= Tt (T Lo (ps) 1T, ()
_ Hl(Q2)(piupil/ +pf,upfl/) =+ HQ(QZ)(pszfV + pfupzu) + H3(Q2)9NV ’

where the coefficients have been truncated to structure functions Hq, Ho, and Hgs for brevity.
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7 Spin 2

The territory of spin 2-particles is less well explored than any spin before, as their repre-
sentatives are mainly exotic. One such example is the hypothetical, massless, and uncharged
graviton. It is postulated to be the gauge boson for gravity interactions and would possess
spin 2. However, it is not very well suited as the target of a scattering experiment, for several
self-explanatory reasons. More suitable targets are 36Cl and 24Tl [17], which are the only
known nuclides to have spin 2. This chapter should thus be considered a mainly theoretical
pondering.

7.1 Polarisation tensor
Following the same reasoning as in the previous chapter, we consider the combination

11=20140. (69)

From this, we can already guess the spin function to be a tensor of rank 2 denoted ¢, which
generally indicates 16 degrees of freedom. By the Clebsch-Gordan decomposition, the spin 2
functions are of the form

+2 +1e£1
C/JJI = gu gy 9

1
==&+ 6, and

SN (70)
b= e + 6+ 2600,
¢ needs to be a symmetric and traceless tensor,
Qv =Gy and - Qg™ =0, (71)

which removes six and one d.o.f., respectively. It can be easily checked that these conditions
are met by the coupled states (70). The last four redundant d.o.f. are omitted by transversity,

P Cuv (72)
since this holds independently for every v index.

Similar to spin 1, spin 2-functions are orthonormal,

M) =G s (73)

and fulfill the completeness relation |21],

Z zq)v(g\n)* :% <9up - IL};,)) (9771/ - p;];n> + %(gw - M) <9Vp - p;};p) (74)

2
A=—2,..., m m
1 Pubv PpPn
~5 o = ) (o = T5). (75)
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7.2 Derivation of the current

Taking transversity and tracelessness into account, the naive ansatz of the vertex contains 26
terms. However, because the current is formed after contracting the vertex with ¢,, 5, (p;) and
Cuvs (Pf)*, we can reduce the form of the vertex further with the aid of additional symmetry
considerations. The symmetry of ¢ implies that the vertex is symmetric in the second and third,
and in the fourth and fifth argument, respectively, i.e. ['H¥1¥2P1P2 = ['H¥2V1P102 — T'HV1V2P2P1 —
Ir#v2vip2Pl - Grouping together terms with such a particular symmetry yields

[Hveenes = Aup vy vy vy Py + Ao PR PPy

+B1p» [ PLV2 P2V +gp1VlgP2V2] —i—BQp [ P1V2 o201 +gplulgp2y2]
+01PZV1PZVQ [p? gplu + pfcl gpw] 4 Czppl 02 [pl{/z MY pl(1 Wz]
+D1pz [pluzps)gg PV +p;/1p;29 pP1V2 +p;j2pfclg p2v1 —I-pflpplg 2V2]
+Daop [P0 g7 + D PR + PP g + P ]
+F, [pi (gplulgpzu 4 gpwgpzm) 4 pi (gP1V2gpzu + gplugpwz)]
+F5 [p? (gﬂlV2g/“/1 + gplmgWQ) + p?l (gpwzglwl + g1 /Wz)]

(76)

Y

which leaves us with 10 terms. Following the same procedure as before, we contract I'#*1¥2P1°2
with (i po (i), Cue(Pf)*, and g, requiring this quantity to vanish. The naive substitution
here is Ay = Ay, By = By, Cy = Cy, Do = D1, and Ey = F;. Omitting constant factors, the
proposed form of the current becomes

JH :Alpuc_{pf}{pf}(C{pi}{pi})* + Blpugaﬂ(gfaﬁ)*
e (Cﬂ{pf}(c{pz}{pz )+ g{pf}{Pf}(CM{pz ) ) (77)
+D1PHC?{pf}(§f,gpi ) 4 E <Cua(cf{pl ) + C:X{Pf}(cfg)*> ’
with the notation convention
el = cpepand  PHPY = Caﬁpapb_ (78)

It is now possible to compute the hadronic tensor exactly as before, either by (a) replacing
the spin 2-functions in terms of their completeness relation (74), or (b) explicitly summing
over the incoming and outgoing spins.
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8 Spin n/2

The general description of the spin functions was provided by Auvil and Brehm in 1966 [22].
In 2009, Lorcé further postulated the form of the electromagnetic current for arbitrary spin
[23]. To compare our more heuristic approach with the generalised version, we will follow the
two publications closely.

8.1 General formula for integer spin

We return to a more common notation and denote £, ..o, (P, A) to be the integer spin j-
function of momentum p and helicity A\. Applying the Clebsch-Gordan decomposition recur-
sively gives us the general expression

5041 K% p7 Z Z j - 17m1; 17m2‘j7 )‘>€a1“~0¢j,1 (pvml)faj (pva) . (79)

m=0,+1m/=—j+1

This polarisation tensor is transverse and traceless,

p”fHQQ'“OCj (p,A) =0 and fuag oy (p,A) =0, (80)

which leaves us with 25 4+ 1 degrees of freedom due to the symmetry of the tensor in every
index. The current assumes the form

T = (=1 & (P Ap) [P Poea(Q%) + (9"76% — g q%) Y Far2(Q%) | Epry (0in M),
(k7]) (kvj_l)
(81)

with the introduced notation

> = Z H( qpl) ﬁ g, (82)

(k,5) k=0 |i=1 i=k+1

and convention Hf:_xl f(i) = 1. The form factors denote the different electromagnetic multi-
poles, with odd labels describing electric and even labels describing magnetic multipoles.

We will now compare the vertices for the different spins in (81) with the ones we derived
earlier. The expressions agree trivially for spin 0 (14). For spin 1 (48) and spin 2 (77), the
expressions coincide almost exactly as well, differing only by constant factors and differently
labelled coefficients/form factors.
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8.2 General formula for half-integer spin

The half-integer spin j-function with j =1+ 1/2 of momentum p and helicity A is denoted
by Ua;.-a,(p, A) and assumes the form

[T+ A I—A
Uy -y (pa )‘) = _;_71 U+(p) gal---al (pa A— %) + Tl u- (p) 6&1---011 (pa A + %) . (83)

Similar to the integer case, the half-integer spin function is symmetric, transverse, and
traceless. It satisfies the additional requirements

(p—m)uay..a;(p,A) =0 and  YFupay..op(p, A) =0, (84)
to constitute the right amount of degrees of freedom. The current is of the form

iorlad
2m

JH = (_1)l Uy, (pfv )‘f) Z 'YM Foq (Q2) +

(k,1)

F2/<;+2(Q2)] Upy ooy (Pis Ai) 5 (85)

with the usual convention (82).

The vertex for spin 1/2 (37) agrees with the general formula. For spin 3/2, we uncover the
first real discrepancy between the literature and our previously pursued methodology. The
general formula proposes for spin 3/2 the vertex

2
e (=R (Q%)g" + P9 oy — o) (- o))"
10
+<—F2(Q2)9Vp + ;7(17; - ;) (pf‘ —pf)) 2m

It is easy to see that this expression can mostly be converted to and from (67), apart from
the Bs term. Furthermore, inspecting (85) reveals that this theory does not allow for g"” and
g"" terms (only ¢g¥? terms are allowed), which are precisely the Bs and By terms in the ansatz
(64). Given that the naive ansatz does not produce the correct amount of form factors, it
is likely that the general equation is more accurate. Notice that the ban of metric tensors
containing the p index holds only for half-integer cases, which is why the comparison in the
integer case was generally succesful.
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9 Conclusion

9.1 Summary

In this thesis, we have considered the first five spin types, which are summarised in Table
2. For spin j functions, the vertex I' possesses in general 2|j| 4+ 1 Lorentz indices. If j is
an integer, I' is scalar in the spinor space but a true tensor in the Lorentz space. If j is a
half-integer, the vertex is a 4x4-matrix in the spinor space but not a Lorentz tensor due to
the nature of the y-matrices.

Prototypical | Spin function | Lorentz type of I' | Spinor type of I’
Spin 0 Carbon 2C 1 vector scalar
Spin 1/2 Proton p U 1 Lorentz index 4 X 4-matrix
Spin 1 Deuteron d & rank 3-tensor scalar
Spin 3/2 | ATT(1232) u®Er 3 Lorentz indices 4 x 4-matrix
Spin 2 | Chlorine 36Cl LY rank 5-tensor scalar

Table 2: Summary of the spin types considered and the resulting mathematical structure of
the vertex I'.

A question that arose in the naive approach was the number of expected terms in the
electromagnetic current. Because of their dependence on @2, the elimination of coefficients to
satisfy gauge invariance is not unique, and there are sometimes more degrees of freedom than
expected, as is the case with spin 3/2. The pairing of coefficients presented here was intuitive,
but not substantially founded. The exact nature of resolving this question is currently open.

Furthermore, how to generally link the arising coefficients to physical form factors or struc-
ture functions such as in (52) and (53) is ambiguous and depends on the conventions used
by authors or research groups in the literature. For example, various expressions for the
electromagnetic current of spin 1 have been uncovered, most of them were equivalent by
reparametrisation but not identical.

Literature of the general procedure of producing electromagnetic currents associated with
the hadronic target was discovered in the late stage of writing this thesis. For this reason,
a closer examination of the methodology described was not possible. It was however within
scope to cross-examine the results harvested by the naive method with the methodology in the
paper. This solidified correct results and at least partially explained some discrepancies, where
present. In-depth discussion surrounding the publication including electromagnetic multipole
decomposition can be found in [24, 25, 26, 27].
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9.2 Outlook

There are many different prospects and motivations to generalise the formulation of the
transition current in the same manner as in (81) and (85). One possibility is to consider
amplitudes which include radiative corrections on the hadronic side as well, which can be
applied to future simulations of Muse experiments [28]. The second prospect is to branch
out towards amplitudes which arise in electroweak interactions. There are ongoing efforts
made for MCMULE to be able to carry out such calculations in the future. This can then be
implemented to simulate the P2 experiment [29], amongst others.

At present, MCMULE is able to perform calculations of 2 — 2 processes at NNLO. The
next logical step is to expand to calculating 2 — 3 processes, such as the one discussed
in Chapter 3.2, at NNLO as well. OPENLOOPS, which currently operates at one-loop, gets
extended as well. This is needed for numerically stable evaluation of two-loop amplitudes,
which then can get implemented into MCMULE. Finally, the involvement of MCMULE with
ULQ2 promises to be an exciting avenue on the precision frontier, for both experimental and
theoretical developments.
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